Giải bài tập SGK Toán 4 Bài: Luyện tập chung trang 123

Phần hướng dẫn giải bài tập Luyện tập chung trang 123 sẽ giúp các em nắm được phương pháp và rèn luyện kĩ năng các giải bài tập từ SGK Toán 4 Cơ bản và Nâng cao.

Giải bài tập SGK Toán 4 Bài: Luyện tập chung trang 123

1. Giải bài 1 trang 123 SGK Toán 4

Điền dấu thích hợp vào chỗ chấm:

\(\dfrac{9}{14}\, ... \, \dfrac{11}{14}\)                   \(\dfrac{4}{25}\, ... \,\dfrac{4}{23}\)                          \(\dfrac{14}{15}\, ... \, 1\)

 \(\dfrac{8}{9}\, ... \,\dfrac{24}{27}\)                    \(\dfrac{20}{19}\, ... \,\dfrac{20}{27}\)                          \(1\, ... \,\dfrac{15}{14}\)

Phương pháp giải

Áp dụng các quy tắc so sánh hai phân số có cùng tử số hoặc cùng mẫu số, so sánh hai phân số khác mẫu số, so sánh phân số với \(1\).

Hướng dẫn giải

 \(\dfrac{9}{14} < \dfrac{11}{14}\)           \(\dfrac{4}{25} < \dfrac{4}{23}\)            \(\dfrac{14}{15}<1\) 

 \(\dfrac{8}{9}= \dfrac{24}{27}\)              \(\dfrac{20}{19}  > \dfrac{20}{27}\)            \(1<\dfrac{15}{14}\)

2. Giải bài 2 trang 123 SGK Toán 4

Với hai số tự nhiên \(3\) và \(5\), hãy viết:

a) Phân số bé hơn \(1\);                                b) Phân số lớn hơn \(1\).

Phương pháp giải

- Nếu tử số bé hơn mẫu số thì phân số bé hơn \(1\).

- Nếu tử số lớn hơn mẫu số thì phân số lớn hơn \(1\).

Hướng dẫn giải

a) Phân số bé hơn \(1\) là: \(\dfrac{3}{5}\).

b) Phân số lớn hơn \(1\) là:\(\dfrac{5}{3}\).

3. Giải bài 3 trang 123 SGK Toán 4

Viết các phân số theo thứ tự từ bé đến lớn:

a) \(\dfrac{6}{11};\dfrac{6}{5};\dfrac{6}{7}\)                                            b) \(\dfrac{6}{20};\dfrac{9}{12};\dfrac{12}{32}\)

Phương pháp giải

So sánh các phân số đã cho theo các quy tắc đã học, sau đó sắp xếp theo thứ tự từ bé đến lớn.

Hướng dẫn giải

a) Ta có: \(\dfrac{6}{11}< \dfrac{6}{7}< \dfrac{6}{5}.\)

Vậy các phân số đã cho sắp xếp theo thứ tự từ bé đến lớn là:    \(\dfrac{6}{11};\dfrac{6}{7};\dfrac{6}{5}.\)

b) Rút gọn phân số : 

\(\dfrac{6}{20}=\dfrac{6:2}{20:2}=\dfrac{3}{10}\)                      

\(\dfrac{9}{12}=\dfrac{9:3}{12:3}=\dfrac{3}{4}\)

\(\dfrac{12}{32}=\dfrac{12:4}{32:4}=\dfrac{3}{8}\)

Vì \(\dfrac{3}{10} < \dfrac{3}{8} < \dfrac{3}{4}\) nên \(\dfrac{6}{20}<\dfrac{12}{32}<\dfrac{9}{12}.\)

Vậy các phân số đã cho sắp xếp theo thứ tự từ bé đến lớn là:  \(\dfrac{6}{20};\dfrac{12}{32};\dfrac{9}{12}.\)

4. Giải bài 3 trang 123 SGK Toán 4

Tính

a) \(\dfrac{2×3×4×5}{3×4×5×6}\)                                    b) \(\dfrac{9×8×5}{6×4×15}\)

Phương pháp giải

Phân tích tử số và mẫu số thành tích của các thừa số, sau đó lần lượt chia nhẩm tích ở tử số và tích ở mẫu số cho các thừa số chung.

Hướng dẫn giải

a) \(\dfrac{2×\not{3}×\not{4}×\not{5}}{\not{3}×\not{4}×\not{5}×6}= \dfrac{2}{6}\) = \(\dfrac{1}{3}\)

b) \(\dfrac{9×8×5}{6×4×15} \)\(= \dfrac{\not{3}×\not{3}×\not{2}×\not{4}×\not{5}}{\not{3}×\not{2}×\not{4}×\not{3}×\not{5}}= 1\) 

Ngày:10/08/2020 Chia sẻ bởi:

CÓ THỂ BẠN QUAN TÂM