Bài 3: Vi phân - Công thức Taylor
Bài giảng Toán cao cấp Bài 3: Vi phân - Công thức Taylor cung cấp các nội dung chính bao gồm khái niệm vi phân, công thức Taylor. Để nắm nội dung chi tiết bài giảng, mời các bạn cùng eLib tham khảo nhé!
Mục lục nội dung
1. Công thức Taylor
1.1 Định lý
Nếu f có đạo hàm cấp n là \({f^{(n)}}\) liên tục trên [a,b] và f có đạo hàm cấp n + 1 trên (a,b) thì \(\exists c \in (a,b)\) sao cho:
\(f(b) = \sum\limits_{k = 0}^n {\frac{{{f^{(k)}}(a)}}{{k!}}} {(b - a)^k} + \frac{{{f^{(n + 1)}}(c)}}{{(n + 1)!}}{(b - a)^{n + 1}}\)
\(= f(a) + \frac{{f'(a)}}{{1!}}(b - a) + \frac{{f''(a)}}{{2!}}{(b - a)^2} + ...\)
\(.... + \frac{{{f^{(n)}}(a)}}{{n!}}{(b - a)^n} + \frac{{{f^{(n + 1)}}(c)}}{{(n + 1)!}}{(b - a)^{n + 1}}\)
Công thức trên được gọi là công thức khai triển Taylor của f tại a.
\({R_n} = \frac{{{f^{(n + 1)}}(c)}}{{(n + 1)!}}{(b - a)^{n + 1}}\) gọi là sai số (dư số) bậc n của công thức khai triển Taylor của f tại a .
Chứng minh:
Đặt \({R_n}(t) = f(t) - f(a) - \sum\limits_{k = 1}^n {\frac{{{f^{(k)}}(a)}}{{k!}}} {\left( {t - a} \right)^k}\)
Ta có: \(R'_n(a)=R''_n(a)=...=R^{(n)}_n(a)=0\)
Và \(R^{(n+1)}_n(t)=f^{(n+1)}(t),\forall t \in (a,b)\)
Đặt \(\varphi (t) = {R_n}(t) - \frac{{{R_n}(b){{(t - a)}^{n + 1}}}}{{{{(b - a)}^{n + 1}}}}\)
\(\varphi\) khả vi, liên tục đến cấp n trên [a,b] và \({\varphi ^{n + 1}}\) tồn tại trong (a,b). Ta có \(\varphi (b) = \varphi (a) = \varphi '(a) = \varphi ''(a) = ... = {\varphi ^{(n)}}(a) = 0\)
Nhận xét: \({\varphi ^{(k)}}(a) = R_n^{(k)}(a) = 0,\forall k = \overline {1,n}\) Ta có:
\(\varphi (a) = \varphi (b)\) nên theo định lý Rolle: \(\exists {a_1} \in (a,b)\) sao cho \(\varphi '({a_1}) = 0\)
Tương tự:
\(\varphi '(a) = \varphi '({a_1}) = 0:\exists {a_2} \in (a,{a_1})\)sao cho \(\varphi ''({a_2}) = 0\)
\(\varphi '(a) = \varphi '({a_2}) = 0:\exists {a_3} \in (a,{a_2})\)sao cho \(\varphi ''({a_3}) = 0\)
............
\(\exists {a_n} \in \left( {a,{a_{n - 1}}} \right):{\varphi ^{(n)}}({a_n}) = 0\)
Cuối cùng, vì \({\varphi ^{(n)}}(a) = {\varphi ^{(n)}}({a_n}) = 0\) nên \(\exists c \in (a,{a_n}):{\varphi ^{(n + 1)}}(c) = 0\)
Mà
\({\varphi ^{(n + 1)}}(c) = R_n^{(n + 1)}(c) - \frac{{(n + 1)!{R_n}(b)}}{{{{(b - a)}^{n + 1}}}} = {f^{n + 1}}(c) - \frac{{(n + 1)!{R_n}(b)}}{{{{(b - a)}^{n + 1}}}}\)
\(\Rightarrow {f^{n + 1}}(c) - \frac{{(n + 1)!{R_n}(b)}}{{{{(b - a)}^{n + 1}}}} = 0\) với \(c \in (a,{a_n}) \subset (a,b)\)
nghĩa là \(\exists c \in (a,b):{R_n}(b) = \frac{{{f^{(n + 1)}}(c){{(b - a)}^{(n + 1)}}}}{{(n + 1)!}}\) (2)
Theo (1) thì \({R_n}(b) = f(b) - \sum\limits_{k!}^n {\frac{{{f^{(k)}}(a)}}{{k!}}} {(b - a)^k}\) (3)
Từ (2) và (3) ta suy ra \(\exists c \in (a,b)\) sao cho
\(f(b) - \sum\limits_{k = 0}^n {\frac{{{f^{(k)}}(a)}}{{k!}}} {(b - a)^k} = \frac{{{f^{(n + 1)}}(c)}}{{(n + 1)!}}{(b - a)^{n + 1}}\)
Chuyển vế ta có đẳng thức cần chứng minh:
\(f(b) = f(a) + \frac{{f'(a)}}{{1!}}(b - a) + \frac{{f''(a)}}{{2!}}{(b - a)^2} + ....\)
\(.... + \frac{{{f^{(n)}}(a)}}{{n!}}{(b - a)^n} + \frac{{{f^{(n + 1)}}(c)}}{{(n + 1)!}}{(b - a)^{n + 1}}\)
với \(c \in (a,b)\)
Nhận xét:
- Khi n = 0 thì công thức trên trở thành công thức Lagrange.
- Khi a = 0 thì công thức Taylor gọi là công thức MacLaurin.
\(f(b) = f(0) + \frac{{f'(0)}}{{1!}}b + \frac{{f''(0)}}{{2!}}{b^2} + ... + \frac{{{f^{(n)}}(0)}}{{n!}}{b^n} + \frac{{{f^{(n + 1)}}(0)}}{{(n + 1)!}}{b^{n + 1}}\)
- Thay \(\left\{ \begin{array}{l} a = x\\ b = x + h \end{array} \right.\), ta có:
\(f(x + h) = f(x) + \frac{{f'(x)}}{{1!}}h + \frac{{f''(x)}}{{2!}}{h^2} + ... + \frac{{{f^{(n)}}(x)}}{{n!}}{h^n} + \frac{{{f^{(n + 1)}}(c)}}{{(n + 1)!}}{h^{n + 1}}\)
với \(x
1.2 Ví dụ
Trên đây là nội dung bài giảng Bài 3: Vi phân - Công thức Taylor được eLib tổng hợp lại nhằm giúp các bạn sinh viên có thêm tư liệu tham khảo. Hy vọng đây sẽ là tư liệu giúp các bạn nắm bắt nội dung bài học dễ dàng hơn.