Giải bài tập SBT Toán 10 Bài 4: Hệ trục tọa độ

Để giúp các em học sinh lớp 10 học tập thật tốt môn Toán, eLib xin giới thiệu nội dung giải bài tập SBT trang 41, 42 bên dưới đây. Tài liệu gồm tất cả các bài tập có phương pháp và hướng dẫn giải chi tiết, rõ ràng, sẽ giúp các em ôn tập lại kiến thức, cũng cố kĩ năng làm bài hiệu quả. Mời các em cùng tham khảo.

Giải bài tập SBT Toán 10 Bài 4: Hệ trục tọa độ

Giải bài tập SBT Toán 10 Bài 4: Hệ trục tọa độ

1. Giải bài 1.36 trang 41 SBT Hình học 10

Viết tọa độ của các vec tơ sau:

a=2i+3ja=2i+3j

b=13i5jb=13i5j

c=3ic=3i

d=2jd=2j

Phương pháp giải

Sử dụng định nghĩa tọa độ véc tơ:

Nếu a=xi+yja=xi+yj  thì cặp số (x;y)(x;y) được gọi là tọa độ của véc tơ aa

Hướng dẫn giải

+) a=2i+3ja=(2;3)a=2i+3ja=(2;3)

+) b=13i5jb=(13;5)b=13i5jb=(13;5)

+) c=3i=3i+0jc=(3;0)c=3i=3i+0jc=(3;0)

+) d=2j=0i2jd=(0;2)d=2j=0i2jd=(0;2)

2. Giải bài 1.37 trang 41 SBT Hình học 10

Viết vec tơ uu dưới dạng u=xi+yju=xi+yj khi biết tọa độ của uu là: (2; - 3), ( - 1;4), (2;0), (0; - 1), (0;0)

Phương pháp giải

Sử dụng định nghĩa tọa độ véc tơ:

Nếu a=xi+yja=xi+yj  thì cặp số (x;y)(x;y) được gọi là tọa độ của véc tơ aa

Hướng dẫn giải

u=(2;3)u=2i3ju=(2;3)u=2i3j

u=(1;4)u=i+4ju=(1;4)u=i+4j

u=(2;0)u=2iu=(2;0)u=2i

u=(0;1)u=ju=(0;1)u=j

u=(0;0)u=0i+0j=0u=(0;0)u=0i+0j=0

3. Giải bài 1.38 trang 42 SBT Hình học 10

Cho a=(1;2),b(0;3)a=(1;2),b(0;3). Tìm tọa độ của các vec tơ x=a+b,y=ab,z=3a4bx=a+b,y=ab,z=3a4b

Phương pháp giải

Sử dụng công thức ka±lb=(kx±lx;ky±ly)

Hướng dẫn giải

x=a+b=(1+0;2+3)=(1;1)

y=ab=(10;23)=(1;5)

z=3a4b=(3.14.0;3.(2)4.3)=(3;18)

4. Giải bài 1.39 trang 42 SBT Hình học 10

Xét xem các cặp vec tơ sau có cùng phương không? Trong trường hợp cùng phương thì xét xem chúng cùng hướng hay ngược hướng.

a) a=(2;3),b=(10;15)

b) u=(0;7),v=(0;8)

c) m=(2;1),b=(6;3)

d) c=(3;4),d=(6;9)

e) e=(0;5),f=(3;0)

Phương pháp giải

Sử sụng lý thuyết : Nếu a=kb mà k > 0 thì hai véc tơ ab cùng hướng.

Nếu a=kb mà k < 0 thì hai véc tơ a và b ngược hướng.

Hướng dẫn giải

a) a,b ngược hướng vì b=5a

b) u,v cùng hướng vì u=78v

c)  m,ncùng hướng vì n=3m

d) c,d không cùng phương vì không tồn tại số k nào để c=kd

e) e,f không cùng phương vì không tồn tại số k nào để e=kf

5. Giải bài 1.40 trang 42 SBT Hình học 10

a) Cho A( - 1;8), B(1;6), C(3;4). Chứng minh ba điểm A, B, C thẳng hàng.

b) Cho A(1;1), B(3;2), C(m + 4;2m + 1). Tìm m để ba điểm A, B, C thẳng hàng.

Phương pháp giải

Ba điểm A,B,C phân biệt thẳng hàng nếu tồn tại số thực k0 sao cho AB=kAC

Hướng dẫn giải

a) AB=(2;2),AC=(4;4)

Vậy AC=2AB ba điểm A, B, C thẳng hàng.

b) AB=(2;1),AC=(m+3;2m)

Ba điểm A, B, C thẳng hàng

AC=kAB{m+3=k.22m=k.1{m+3=2k2m=k{m+3=2.2m2m=k{3m=32m=k{m=1k=2

Vậy m = 1.

6. Giải bài 1.41 trang 42 SBT Hình học 10

Cho bốn điểm A( - 2; - 3), B(3;7), C(0;3), D( - 4; - 5). Chứng minh rằng hai đường thẳng AB và CD song song với nhau.

Phương pháp giải

Hai đường thẳng AB và CD song song nếu ABCD cùng phương nhưng ACAB không cùng phương.

Hướng dẫn giải

AB=(5;10),CD=(4;8).TacóCD=45AB, vậy hai đường thẳng AB và CD song song hoặc trùng nhau.

Ta có AC=(2;6)AB=(5;10) không trùng phương vì 52106

Vậy AB // CD

7. Giải bài 1.42 trang 42 SBT Hình học 10

Cho tam giác ABC. Các điểm M(1;1), N(2;3), P(0; - 4) lần lượt là trung điểm các cạnh BC, CA, AB. Tính tọa độ các đỉnh của tam giác.

Phương pháp giải

- Dựng hình

- Ta có: MN=(1;2);PA=(xA;yA+4)

PA=MNsuyra{xA=1yA+4=2{xA=1yA=2

Tương tự tính được tọa độ diểm B, C

Hướng dẫn giải

Ta có: MN=(1;2);PA=(xA;yA+4)

PA=MNsuyra{xA=1yA+4=2{xA=1yA=2

Tương tự, ta tính được {xB=1yB=6{xC=3yC=8

Vậy tọa độ các đỉnh của tam giác là A(1; - 2), B( - 1; - 6), C(3;8)

8. Giải bài 1.43 trang 42 SBT Hình học 10

Cho hình bình hành ABCD. Biết A(2; - 3), B(4;5), C(0; - 1). Tính tọa độ của đỉnh D

Phương pháp giải

Dựng hình 

Ta có: BA=(2;8)

CD=(xD;yD+1)vàBA=CD

Suy ra được tọa độ điểm D cần tìm

Hướng dẫn giải

Ta có: BA=(2;8)

CD=(xD;yD+1).VìBA=CDnên{xD=2yD+1=8{xD=2yD=9

Vậy tọa độ đỉnh D( - 2; - 9)

Nhận xét: Ta có thể tính tọa độ đỉnh D dựa vào biểu thức BD=BA+BC

9. Giải bài 1.44 trang 42 SBT Hình học 10

Cho tam giác ABC có A( - 5;6), B( - 4; - 1), C(4;3). Tìm tọa độ trung điểm I của AC. Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Phương pháp giải

- Sử dụng công thức trung điểm {xI=xA+xC2yI=yA+yC2

- Tứ giác ABCD  là hình bình hành I là trung điểm của BD

Hướng dẫn giải

Gọi I là trung điểm của AC. Khi đó

xI=5+42=12,yI=6+32=92

Tứ giác ABCD là hình bình hành I là trung điểm của BD

Vậy

{xD42=12yD12=92{xD4=1yD1=9 {xD=3yD=10

Vậy tọa độ đỉnh D là (3;10).

10. Giải bài 1.45 trang 42 SBT Hình học 10

Cho tam giác ABC có A( - 3;6), B(9; - 10), C( - 5;4)

a) Tìm tọa độ của trọng tâm G của tam giác ABC

b) Tìm tọa độ điểm D sao cho tứ giác BGCD là hình bình hành.

Phương pháp giải

a) Sử dụng công thức tọa độ trọng tâm {xG=xA+xB+xC3yG=yA+yB+yC3

b) Sử dụng tính chất hình bình hành BG=DC

Hướng dẫn giải

a) Ta có: {xG=3+953=13yG=610+43=0

b) Tứ giác BGCD là hình bình hành thì BG=DC

{139=5xD0(10)=4yD {xD=113yD=6

Vậy tọa độ điểm D là D(113;6)

11. Giải bài 1.46 trang 42 SBT Hình học 10

Cho tam giác đều ABC cạnh a. Chọn hệ tọa độ (O;i,j) trong đó O là trung điểm của cạnh BC, i cùng hướng với OC,j cùng hướng với OA

a) Tính tọa độ của các đỉnh của tam giác ABC

b) Tìm tọa độ trung điểm E của AC

c) Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC

Phương pháp giải

Dựng hình

a) Do O là trung điểm CB nên OB=OC=a2 và OA=AC2OC2=a2a24=a32

Từ đó xác định được tọa độ các điểm A, B, C

b) Do E là trung điểm của AC nên {xE=0+a22=a4yE=a32+02=a34

Suy ra được tọa độ điểm E

c) G là trọng tâm tam giác thì {xG=0+(a2)+a23=0yG=a32+0+03=a36

Suy ra được tọa độ điểm G

Hướng dẫn giải

a) Do O là trung điểm CB nên OB=OC=a2OA=AC2OC2=a2a24=a32

Từ hình vẽ ta suy ra A(0;a32),B(a2;0),C(a2;0)

b) Do E là trung điểm của AC nên {xE=0+a22=a4yE=a32+02=a34nênE(a4;a34)

c) Tâm đường tròn ngoại tiếp tam giác đều trùng với trọng tâm của tam giác.

Gọi G là trọng tâm tam giác thì {xG=0+(a2)+a23=0yG=a32+0+03=a36hayG(0;a36)

12. Giải bài 1.47 trang 42 SBT Hình học 10

Cho lục giác đều ABCDEF. Chọn hệ tọa độ (O;i,j), trong đó O là tâm của lục giác đều, hai véc tơ iOD cùng hướng, jEC cùng hướng . Tính tọa độ các đỉnh của lục giác biết độ dài của lục giác là 6.

Phương pháp giải

Dựng hình, tính độ dài các đoạn thẳng và suy ra tọa độ cần tính.

Hướng dẫn giải

Từ hình vẽ ta thấy A(6;0) và D(6;0) (do các tam giác AOB và COD đều nên OA = OD = AB = 6)

Gọi H, K lần lượt là hình chiếu của C, B lên trục Ox

Khi đó CH=DCsin600=632=33

OH=OC2CH2=62(33)2=3

Do đó C(3;33)

B đối xứng với C qua Oy nên B(-3; 33)

E đối xứng với C qua Ox nên E(3; -33)

F đối xứng với C qua O nên F(-3; -33)

Vậy A(6;0),D(6;0),B(3;33),C(3;33),E(3;33),F(3;33)

Các em hãy luyện tập bài trắc nghiệm Hệ trục tọa độ Toán 10 sau để nắm rõ thêm kiến thức bài học.

Trắc Nghiệm

Ngày:31/10/2020 Chia sẻ bởi:

CÓ THỂ BẠN QUAN TÂM