Giải bài tập SBT Vật Lí 12 Bài 2: Con lắc lò xo
Dưới đây là nội dung Hướng dẫn Giải bài tập SBT Vật lý 12 Bài 2 nhằm giúp các em học sinh nắm vững kiến thức và ôn luyện phương pháp giải bài tập về con lắc lò xo. Mời các em cùng theo dõi.
Mục lục nội dung
1. Giải bài 2.1 trang 6 SBT Vật lý 12
2. Giải bài 2.2 trang 6 SBT Vật lý 12
3. Giải bài 2.3 trang 6 SBT Vật lý 12
4. Giải bài 2.4 trang 6 SBT Vật lý 12
5. Giải bài 2.5 trang 6 SBT Vật lý 12
6. Giải bài 2.6 trang 6 SBT Vật lý 12
7. Giải bài 2.7 trang 7 SBT Vật lý 12
8. Giải bài 2.8 trang 7 SBT Vật lý 12
9. Giải bài 2.9 trang 7 SBT Vật lý 12
10. Giải bài 2.10 trang 7 SBT Vật lý 12
11. Giải bài 2.11 trang 7 SBT Vật lý 12
12. Giải bài 2.12 trang 7 SBT Vật lý 12
13. Giải bài 2.13 trang 8 SBT Vật lý 12
14. Giải bài 2.14 trang 8 SBT Vật lý 12
15. Giải bài 2.15 trang 8 SBT Vật lý 12
16. Giải bài 2.16 trang 8 SBT Vật lý 12
1. Giải bài 2.1 trang 6 SBT Vật lý 12
Một lò xo giãn ra 2,5cm khi treo và nó một vật có khối lượng 250g. Cho biết con lắc lò xo thẳng đứng dao động theo cùng quy luật với con lắc lò xo nằm ngang (lấy g=10m/s2 ). Chu kì của con lắc được tạo thành như vậy là
A. 0,31s B. 10s
C. 1s D. 126s
Phương pháp giải
- Tính độ biến dạng lò xo theo công thức
Δl = mg/k
- Sử dụng công thức tính chu kì dao động:
T = 2π/ω
Hướng dẫn giải
- Ta có độ biến dạng lò xo ở vị trí cân bằng:
Δl = mg/k (1)
Mà: \(\omega = \sqrt {\frac{k}{m}} (2)\)
Từ (1) và (2):
\(\Rightarrow \omega \: = \sqrt {\frac{g}{{{\rm{\Delta }}l}}} \)
- Chu kì: \(T = \frac{{2\pi }}{\omega } = 2\pi \sqrt {\frac{{{\rm{\Delta }}l}}{g}} = 2\pi \sqrt {\frac{{0,025}}{{10}}} = 0,31(s)\)
- Chọn A.
2. Giải bài 2.2 trang 6 SBT Vật lý 12
Một con lắc lò xo dao động điều hòa theo trục x nằm ngang. Lò xo có độ cứng k=100N/m. Khi vật có khối lượng m của con lắc đi qua vị trí có li độ x = −4cm thì thế năng của con lắc đó
A. 8J
B. 0,08J
C. −0,08J
D. Không xác định được vì chưa biết giá trị của khối lượng m
Phương pháp giải
Thế năng đàn hồi tính theo công thức: \({{\rm{W}}_t} = \frac{1}{2}k{x^2}\)
Hướng dẫn giải
- Thế năng đàn hồi của con lắc tại vị trí li độ x=−4cm là:
\({{\rm{W}}_t} = \frac{1}{2}k{x^2} = \frac{1}{2}.100.{( - 0,04)^2} = 0,08J\)
Chú ý: Khi tính năng lượng li độ phải đổi sang đơn vị mét
- Chọn B
3. Giải bài 2.3 trang 6 SBT Vật lý 12
Một con lắc lò xo có khối lượng m=0,5kg và độ cứng k=60N/m . Con lắc dao động với biên độ bằng 5cm. Tốc độ con lắc khi qua vị trí cân bằng là
A. 0,77m/s B. 0,17m/s
C. 0m/s D. 0,55m/s
Phương pháp giải
- Áp dụng công thức: \( \omega = \sqrt {\frac{k}{m}}\) để tính tần số góc
- Tính tốc độ theo công thức:
vmax = Aω
Hướng dẫn giải
- Khi vật đi qua vị trí cân bằng thì tốc độ đạt cực đại:
vmax = Aω
- Ta có: A = 5cm =0,05m
\(\begin{array}{l} \omega = \sqrt {\frac{k}{m}} = \sqrt {\frac{{60}}{{0,5}}} = 2\sqrt 3 (rad/s)\\ {v_{\max }} = A\varpi = 0,05.2\sqrt {30} \approx 0,55m/s \end{array}\)
- Chú ý: Khi tính năng lượng, li độ phải đổi sang đơn vị mét.
- Chọn D
4. Giải bài 2.4 trang 6 SBT Vật lý 12
Một con lắc là xo có cơ năng 0,9J và biên độ dao động A=15cm. Động năng của con lắc tại li độ x=−5cm là
A. 0,8J
B. 0,3J
C. 0,6J
D. Không xác định được vì chưa biết độ cứng của lò xo
Phương pháp giải
- Dựa vào công thức cơ năng:
\(\begin{array}{l} {\rm{W}} = \frac{1}{2}k{A^2}\\ \end{array}\)
để tìm độ cứng k là:
\( k = \frac{{2W}}{{{A^2}}}\)
- Sử dụng công thức tính động năng theo li độ:
\({{\rm{W}}_d} = \frac{1}{2}k({A^2} - {x^2})\)
Hướng dẫn giải
- Cơ năng của con lắc:
\(\begin{array}{l} {\rm{W}} = \frac{1}{2}k{A^2}\\ \Rightarrow k = \frac{{2W}}{{{A^2}}} = \frac{{2.0,9}}{{{{0,15}^2}}} = 80(N/m) \end{array}\)
- Động năng của vật tại li độ x = −5cm là
\(\begin{array}{l} {{\rm{W}}_d} = \frac{1}{2}k({A^2} - {x^2})\\ = \frac{1}{2}.80.({0,15^2} - {( - 0,05)^2}) = 0,8J \end{array}\)
- Chọn A
5. Giải bài 2.5 trang 6 SBT Vật lý 12
Một con lắc lò xo có độ cứng k=200N/m, khối lượng m=200g dao động điều hòa với biên độ A=10cm. Tốc độ của con lắc khi qua vị trí có li độ x=2,5cm là
A. 86,6m/s B. 3,06m/s
C. 8,67m/s D. 0,0027m/s
Phương pháp giải
- Sử dụng công thức tính động năng theo li độ:
\({{\rm{W}}_d} = \frac{1}{2}k({A^2} - {x^2})\)
- Sử dụng công thức: \({{\rm{W}}_d} = \frac{1}{2}m{v^2}\)
Suy ra công thức tính vận tốc là:
\({v = \sqrt {\frac{k}{m}({A^2} - {x^2})} }\)
Hướng dẫn giải
6. Giải bài 2.6 trang 6 SBT Vật lý 12
Con lắc lò xo gồm một vật nhỏ gắn với một lò xo nhẹ dao động điều hoà theo phương ngang. Lực kéo về tác dụng vào vật luôn
A. cùng chiều với chiều chuyển động của vật.
B. ngược chiều với chiều chuyển động của vật.
C. hướng về vị trí cân bằng.
D. hướng về vị trí biên
Phương pháp giải
Lực kéo về của con lắc lò xo cùng hướng với gia tốc và luôn hướng về vị trí cân bằng
Hướng dẫn giải
- Con lắc lò xo gồm một vật nhỏ gắn với một lò xo nhẹ dao động điều hoà theo phương ngang. Lực kéo về tác dụng vào vật luôn hướng về vị trí cân bằng
- Chọn C
7. Giải bài 2.7 trang 7 SBT Vật lý 12
Một con lắc lò xo gồm một vật nhỏ khối lượng 100g gắn với một lò xo nhẹ. Con lắc dao động điều hoà theo phương ngang với phương trình x=10cos10πt(cm;s). Mốc thế năng ở vị trí cân bằng. Lấy π2=10. Cơ năng của con lắc bằng
A.0,50J B. 1,10J
C. 1,00J D. 0,05J
Phương pháp giải
- Tìm độ cứng k:
\(\omega = \sqrt {\frac{k}{m}} \Rightarrow k = m.{\omega ^2}\)
- Sử dụng công thức tính cơ năng của vật dao động điều hòa:
\({\rm{W}} = \frac{1}{2}k{A^2}\)
Hướng dẫn giải
- Đổi: m=100g=0,1kg
- Từ phương trình: x=10cos10πt (cm), ta có:
+ A = 10cm = 0,1m
+ ω = 10π (rad/s)
- Ta có:
\(\omega = \sqrt {\frac{k}{m}} \Rightarrow k = m.{\omega ^2}\)
- Suy ra, cơ năng con lắc:
\(\begin{array}{l} {\rm{W}} = \frac{1}{2}k{A^2} = \frac{1}{2}m.{\omega ^2}.{A^2}\\ = \frac{1}{2}.0,1.{(10\pi )^2}{.0,1^2} = 0,5J \end{array}\)
- Chọn A
8. Giải bài 2.8 trang 7 SBT Vật lý 12
Một con lắc lò xo có khối lượng vật nhỏ là 50g. Con lắc dao động điều hoà theo một trục cố định nằm ngang với phương trình x=Acosωt. Cứ sau những khoảng thời gian 0,05s thì động năng và thế năng của vật lại bằng nhau. Lấy π2=10. Lò xo của con lắc có độ cứng bằng
A. 25N/m B. 200N/m
C. 100N/m D. 50N/m
Phương pháp giải
- Sử dụng công thức tính thế năng và động năng:
+ \({{\rm{W}}_t} = \frac{1}{2}k{x^2}\)
+ \({{\rm{W}}_d} = \frac{1}{2}k({A^2} - {x^2})\)
- Cho hai công thức trên bằng nhau tìm x theo A
- Khoảng thời gian giữa hai lần liên tiếp động năng bằng thế năng là T/4
⇒ tìm được chu kì và tần số góc
- Độ cứng k được tính theo công thức:
k = m.ω2
Hướng dẫn giải
- Thế năng tại li độ x:
\({{\rm{W}}_t} = \frac{1}{2}k{x^2}\)
- Động năng tại li độ x:
\({{\rm{W}}_d} = \frac{1}{2}k({A^2} - {x^2})\)
\(\begin{array}{*{20}{l}} \begin{array}{l} {W_t} = {{\rm{W}}_d}\\ \Leftrightarrow \frac{1}{2}k{x^2} = \frac{1}{2}k({A^2} - {x^2})\\ \Leftrightarrow {x^2} = ({A^2} - {x^2})\\ \Leftrightarrow x = \pm \frac{{A\sqrt 2 }}{2} \end{array} \end{array}\)
- Ta tính được khoảng thời gian giữa lần động năng bằng thế năng là:
t = T/4 (s)
- Suy ra T/4 = 0,05 ⇒T = 4.0,05 = 0,2(s)
⇒ ω = 10π (rad/s)
⇒k = m.ω2 = 0,05.(10π)2= 50 (rad/s)
- Chọn D
9. Giải bài 2.9 trang 7 SBT Vật lý 12
Một con lắc lò xo dao động điều hoà theo phương ngang với biên độ10cm. Mốc thế năng ở vị trí cân bằng. Cơ năng của con lắc là 200mJ. Lò xo của con lắc có độ cứng là
A. 40N/m B. 50N/m
C. 4N/m D. 5N/m
Phương pháp giải
- Từ công thức tính cơ năng của con lắc:
\({\rm{W}} = \frac{1}{2}k{A^2}\)
- Suy ra công thức tính độ cứng là:
\(k=\frac{{2W}}{{{A^2}}}\)
Hướng dẫn giải
- Đổi: A = 10cm = 0,1m; W = 200mJ = 0,2J
- Ta có cơ năng của con lắc
\({\rm{W}} = \frac{1}{2}k{A^2}\)
\(\Rightarrow k = \frac{{2W}}{{{A^2}}} = \frac{{2.0,2}}{{{{0,1}^2}}} = 40(N/m)\)
- Chọn A
10. Giải bài 2.10 trang 7 SBT Vật lý 12
Một chất điểm dao động điều hoà trên trục Ox. Trong các đại lượng sau của chất điểm: biên độ, vận tốc, gia tốc, động năng thì đại lượng nào không thay đổi theo thời gian?
A. Gia tốc. B. Vận tốc.
C. Động năng. D. Biên độ.
Phương pháp giải
Vận dụng lí thuyết về các đại lượng trong dao động điều hòa
Hướng dẫn giải
- Vận tốc, gia tốc biến thiên điều hòa theo thời gian
- Động năng biến thiên tuần hoàn theo thời gian
- Biên độ là đại lượng không thay đổi theo thời gian
- Chọn D
11. Giải bài 2.11 trang 7 SBT Vật lý 12
Con lắc lò xo gồm lò xo nhẹ có độ cứng 50N/m và vật nhỏ có khối lượng 200g đang dao động điều hoà theo phương ngang. Lấy π2=10. Tần số dao động của con lắc là
A. 5,00Hz B. 2,50Hz
C. 0,32Hz D. 3,14Hz
Phương pháp giải
Tần số dao động của con lắc lò xo được tinh bằng công thức:
\(f = \frac{1}{{2\pi }}\sqrt {\frac{k}{m}} \)
Hướng dẫn giải
- Đổi: m = 200g = 0,2kg
- Tần số dao động của con lắc lò xo:
\(f = \frac{1}{{2\pi }}\sqrt {\frac{k}{m}} \)
\( = \frac{1}{{2\sqrt {10} }}\sqrt {\frac{{50}}{{0,2}}} = 2,5(Hz)({\pi ^2} = 10)\)
- Chọn B
12. Giải bài 2.12 trang 7 SBT Vật lý 12
Một vật nhỏ có khối lượng 500g dao động điều hoà dưới tác dụng của một lực kéo về có biểu thức F=−0,8cos4t(N). Biên độ dao động của vật là
A. 8cm B. 6cm
C. 12cm D. 10cm
Phương pháp giải
- Sử dụng công thức tính tần số góc để tìm k:
\( \omega = \sqrt {\frac{k}{m}} \Rightarrow k = m{\omega ^2}\\\)
- Sử dụng biểu thức lực kéo về: F0=−kA
để tìm A
Hướng dẫn giải
- Ta có tần số góc:
\(\begin{array}{l} \omega = \sqrt {\frac{k}{m}} \Rightarrow k = m{\omega ^2}\\ = {0,5.4^2} = 8(N/m) \end{array}\)
- Lực kéo về:
\(\begin{array}{l} F = - kx \Leftrightarrow - 0,8\cos 4t = - 8.x\\ \Leftrightarrow x = 0,1\cos 4t(m) \end{array}\)
- Suy ra: A = 0,1m = 10cm
- Chọn D
13. Giải bài 2.13 trang 8 SBT Vật lý 12
Một con lắc lò xo có khối lượng m=50g, dao động điều hòa trên trục x với chu kì T=0,2s và biên độ A=0,2m. Chọn gốc tọa độ O tại vị trí cân bằng, gốc thời gian là lúc con lắc qua vị trí cân bằng theo chiều âm.
a) Viết phương trình dao động của con lắc.
b) Xác định độ lớn và chiều vecto vận tốc, gia tốc và lực kéo về tại thời điểm t=3T/4
Phương pháp giải
a) Dựa theo các số liệu bài cho để tìm ω, tìm A, tìm pha ban đầu φ và viết phương trình
b) Thay thời gian t vào phương trình để tìm x, khi đó:
- Vận tốc và gia tốc được tính bằng công thức:
|v|=0 và |a|= Aω2
- Sử dụng công thức tính độ lớn lực kéo về: F=m|a|
Hướng dẫn giải
a) Viết phương trình dao động của vật
- Tần số góc: ω = 2π/T = 2π/0,2 = 10π (rad/s)
- Biên độ: A = 0,2m = 20cm
- Tìm φ: t=0:
+ x0= Acosφ =0
+v =−Aωsinφ <0
⇒ φ = ±π/2 ; sinφ >0
⇔ φ = π/2
- Vậy phương trình dao động:
\(x = 20\cos (10\pi t + \frac{\pi }{2})(cm)\)
b) Tại thời điểm t = 3T/4 = 3/4.0,2 = 0,15s
- Li độ:
x = 20cos(10πt+π/2) = 20cos(10π.0,15+π/2) = 20 (cm)
- Vật ở vị trí biên dương
⇒ |v|=0 đi theo chiều âm
⇒ |a|= Aω2 = 0,2.(10π)2 = 197 (m/s2) hướng về vị trí cân bằng
- Lực kéo về: F = m|a| = 0,05.197 = 9,85N
- Lực kéo về có hướng cùng với hướng gia tốc nên lực kéo về cũng hướng về vị trí cân bằng.
14. Giải bài 2.14 trang 8 SBT Vật lý 12
Một con lắc lò xo có biên độ A=10,0cm, có tốc độ cực đại 1,2m/s và có cơ năng 1J. Hãy tính:
a) Độ cứng của lò xo.
b) Khối lượng của quả cầu con lắc.
c) Tần số dao động của con lắc.
Phương pháp giải
- Vận dụng công thức tính cơ năng:
\({\rm{W}} = \frac{1}{2}k{A^2} = \frac{1}{2}m{v_{\max }}^2\)
để tìm độ cứng: \({k = \frac{{2W}}{{{A^2}}}}\) và khối lượng là: \({m = \frac{{2W}}{{{v_{{{\max }^2}}}}}}\)
- Sử dụng công thức tính tần số dao động:
\(f = \frac{1}{{2\pi }}\sqrt {\frac{k}{m}} \)
Hướng dẫn giải
Ta có: A=10cm=0,1m
a) Độ cứng của lò xo:
\(\begin{array}{l} {\rm{W}} = {W_{{t_{\max }}}} = \frac{1}{2}k{A^2}\\ \Rightarrow k = \frac{{2W}}{{{A^2}}} = \frac{{2.1}}{{{{0,1}^2}}} = 200(N/m) \end{array}\)
b) Khối lượng là:
\(\begin{array}{l} {\rm{W}} = {{\rm{W}}_{{d_{\max }}}} = \frac{1}{2}mv_{\max }^2\\ \Rightarrow m = \frac{{2W}}{{v_{\max }^2}} = \frac{{2.1}}{{{{1,2}^2}}} = 1,39(kg) \end{array}\)
c) Tần số dao động:
\(f = \frac{1}{{2\pi }}\sqrt {\frac{k}{m}} = \frac{1}{{2\pi }}\sqrt {\frac{{200}}{{1,39}}} = 1,9(Hz)\)
15. Giải bài 1.15 trang 8 SBT Vật lý 12
Một vật có khối lượng 10g dao động điều hòa với biên độ 24cm và chu kì 4,0s. Tại thời điểm t=0, vật ở vị trí biên x=−A.
a) Viết phương trình dao động của vật.
b) Tính li độ, gia tốc và lực kéo về tại thời điểm t=0,5s.
c) Xác định thời điểm đầu tiên vật qua vị trí có li độ x=−12cm và tốc độ của vật tại thời điểm đó.
Phương pháp giải
a) Dựa theo các số liệu bài cho để tìm ω, tìm A, tìm pha ban đầu φ và viết phương trình
b) Thay t vào biểu thức li độ, gia tốc, lực kéo về
- \({x = 24\cos (\frac{\pi }{2}t + \pi )}\)
- \({a = - 12.{{(\frac{\pi }{2})}^2}\cos (\frac{\pi }{2}t + \pi )}\)
- F = m|a|
c) Sử dụng hình tròn lượng giác để tính t
Tốc độ được tính theo công thức:
\(v = \omega \sqrt {{A^2} - {x^2}} \)
Hướng dẫn giải
a) Viết phương trình dao động của vật
- Tần số góc: ω = 2π/T = 2π/4 = π/2 (rad/s)
- Biên độ: A=24cm
- Tìm φ:
t=0: x0 = Acosφ = −A
⇔ cosφ =−1 ⇔ φ = π(rad)
- Vậy phương trình dao động:
\(x = 24\cos (\frac{\pi }{2}t + \pi )(cm)\)
b) Phương trình gia tốc:
\(\begin{array}{l} a = - A{\omega ^2}\cos (\omega t + \varphi )\\ = - 12.{(\frac{\pi }{2})^2}\cos (\frac{\pi }{2}t + \pi )(cm/{s^2}) \end{array}\)
- Tại thời điểm t=0,5s:
- Li độ:
\(\begin{array}{l} x = 24\cos (\frac{\pi }{2}t + \pi )\\ = 24\cos (\frac{\pi }{2}.0,5 + \pi ) = - 12\sqrt 2 (cm) \end{array}\)
- Gia tốc:
\(a = - 12.{(\frac{\pi }{2})^2}\cos (\frac{\pi }{2}t + \pi )\)
\(\begin{array}{l} = - 12.{(\frac{\pi }{2})^2}\cos (\frac{\pi }{2}.0,5 + \pi )\\ = 41,9(cm/{s^2}) \end{array}\)
- Lực kéo về:
F = m|a| = 0,01.0,419 =4,19.10−3(N)
c) Thời điểm đầu tiên vật đi qua li độ x=−12cm là
- Vị trí xuất phát: x=−A
- Vị trí đích: x=−12cm
- Vẽ vòng tròn lượng giác:
- Từ hình vẽ: cos(ωt) = 1/2
⇒ ωt = π/3 ⇔ π/2t = π/3 ⇔ t = 23s
- Tốc độ tại thời điểm đó:
\(v = \omega \sqrt {{A^2} - {x^2}} \)
\( = \frac{\pi }{2}\sqrt {{{24}^2} - {{( - 12)}^2}} = 32,6(cm/s)\)
16. Giải bài 2.16 trang 8 SBT Vật lý 12
Một con lắc lò xo gồm một vật nhỏ khối lượng 200g gắn với một lò xo nhẹ, dao động điều hòa theo trục Ox nằm ngang với tần số 2,5Hz. Trong khi dao động, chiều dài lò xo biến thiên từ l1=20cm đến l2=24cm.
a) Tính biên độ dao động của vật và chiều dài của lò xo khi chưa biến dạng.
b) Viết phương trình dao động của vật, biết khi t=0 vật ở vị trí biên x=+A.
c) Tính vận tốc và gia tốc của vật khi vật đi qua vị trí cân bằng.
Phương pháp giải
a) Độ dài quỹ đạo chuyển động của vật được tính theo công thức
L = 2A =l2−l1
b) Dựa theo các số liệu bài cho để tìm ω, tìm A, tìm pha ban đầu φ và viết phương trình
c) Khi vật qua VTCB, vận tốc và gia tốc được tính bằng công thức:
v = ±Aω, a = 0
Hướng dẫn giải
a) Độ dài quỹ đạo chuyển động của vật bằng khoảng biến thiên chiều dài của lò xo:
L = 2A = l2−l1 = 24−20 = 4cm ⇒ A=2cm
Chiều dài tự nhiên:
l0= l1+A = 20+2 = 22cm
b) Viết phương trình dao động của vật
- Tần số góc:
ω = 2πf = 2π.2,5 =5π (rad/s)
- Biên độ: A=2cm
- Tìm φ: t=0: x0 = Acosφ =A
⇔cosφ = 1⇔ φ=0 (rad)
⇔ cosφ =1 ⇔ φ=0(rad)
Vậy phương trình dao động:
x = 2cos(5πt) (cm)
c) Khi vật đi qua vị trí cân bằng:
- Vật tốc:
v = ±Aω = ±2.5π = ±10π (cm/s)
- Gia tốc: a = 0
- Vận tốc có thể âm có thể dương, khi đi qua vị trí cân bằng theo chiều dương v=Aω còn khi đi qua vị trí cân bằng theo chiều âm v=−Aω
17. Giải bài 2.17 trang 8 SBT Vật lý 12
Một con lắc dao động điều hòa.
a) Tại li độ x bằng một nửa biên độ thì bao nhiêu phần của cơ năng là thế năng? Bao nhiêu phần là động năng?
b) Tại li độ nào (tính theo biên độ) thì động năng bằng thế năng?
Phương pháp giải
Áp dụng các công thức tính sau:
+ Động năng: \({{\rm{W}}_d} = \frac{1}{2}k({A^2} - {x^2})\)
+ Thế năng: \({{\rm{W}}_t} = \frac{1}{2}k{x^2}\)
+ Cơ năng: \({\rm{W}} = \frac{1}{2}k{A^2}\)
cho từng trường hợp ở câu a và b
Hướng dẫn giải
a) Tại x = A/2:
\(\begin{array}{l} \frac{{{{\rm{W}}_t}}}{W} = \frac{{\frac{1}{2}k{x^2}}}{{\frac{1}{2}k{A^2}}} = {\left( {\frac{x}{A}} \right)^2}\\ = {\left( {\frac{1}{2}} \right)^2} = 0,25 = 25{\rm{\% }} \end{array}\)
Vậy li độ x bằng một nửa biên độ thì 25% của cơ năng là thế năng, 75% là động năng
b) Xác định vị trí:
\(\begin{array}{l} {{\rm{W}}_d} = {{\rm{W}}_t}\\ \Leftrightarrow \frac{1}{2}k({A^2} - {x^2}) = \frac{1}{2}k{x^2}\\ \Leftrightarrow x = \pm \frac{{A\sqrt 2 }}{2} \end{array}\)
18. Giải bài 2.18 trang 9 SBT Vật lý 12
Một con lắc lò xo gồm một vật có khối lượng 0,5kg gắn vào đầu tự do của một lò xo nhẹ có độ cứng 20N/m. Con lắc dao động theo trục Ox nằm ngang với biên độ dao động là 3cm. Tính:
a) Cơ năng của con lắc và tốc độ cực đại của vật.
b) Động năng và tốc độ cực đại của vật tại vị trí có li độ 2,0cm
Phương pháp giải
- Áp dụng các công thức sau để tính:
+ Động năng: \({{\rm{W}}_d} = \frac{1}{2}k({A^2} - {x^2})\)
+ Cơ năng: \({{\rm{W}}_d} = \frac{1}{2}k{A^2}\)
- Vận tốc được tính theo công thức:
\({{v_{\max }} = \sqrt {\frac{{2W}}{m}} }\)
Hướng dẫn giải
- Cơ năng của con lắc:
\(\begin{array}{l} {\rm{W}} = \frac{1}{2}k{A^2}\\ = \frac{1}{2}{.20.0,03^2} = {9.10^{ - 3}}J = 9mJ \end{array}\)
- Vận tốc là:
\(\begin{array}{l} {\rm{W}} = \frac{1}{2}mv_{\max }^2\\ \Rightarrow {v_{\max }} = \sqrt {\frac{{2W}}{m}} = \sqrt {\frac{{{{2.9.10}^{ - 3}}}}{{0,5}}} = 0.19m/s \end{array}\)
b) Tại li độ x=2cm
\(\begin{array}{l} {{\rm{W}}_d} = \frac{1}{2}k({A^2} - {x^2})\\ = \frac{1}{2}.20.({0,03^2} - {0,02^2})\\ = {5.10^{ - 3}}J = 5mJ \end{array}\)
Ta có:
\(\begin{array}{l} {{\rm{W}}_d} = \frac{1}{2}m{v^2}\\ \Rightarrow v = \sqrt {\frac{{2{{\rm{W}}_d}}}{m}} \\ = \sqrt {\frac{{{{2.5.10}^{ - 3}}}}{{0,5}}} = 0,14(m/s) \end{array}\)
Tham khảo thêm
- doc Giải bài tập SBT Vật lý 12 Bài 1: Dao động điều hòa
- doc Giải bài tập SBT Vật Lí 12 Bài 3: Con lắc đơn
- doc Giải bài tập SBT Vật Lí 12 Bài 4: Dao động tắt dần. Dao động cưỡng bức
- doc Giải bài tập SBT Vật Lí 12 Bài 5: Tổng hợp hai dao động điều hòa cùng phương, cùng tần số. Phương pháp Fre-Nen
- doc Giải bài tập SBT Vật Lý 12 Bài: Bài tâp cuối chương I - Dao động cơ