Giải bài tập SGK Toán 11 Nâng cao Bài 4: Cấp số nhân

eLib xin giới thiệu đến các em học sinh lớp 11 nội dung giải bài tập SGK Nâng cao bài Cấp số nhân bên dưới đây, thông qua tài liệu này các em sẽ hệ thống lại toàn bộ kiến thức đã học, bên cạnh đó các em còn nắm được phương pháp giải bài tập và vận dụng vào giải các bài tập tương tự.

Giải bài tập SGK Toán 11 Nâng cao Bài 4: Cấp số nhân

Giải bài tập SGK Toán 11 Nâng cao Bài 4: Cấp số nhân

1. Giải bài 29 trang 120 SGK Đại số & Giải tích 11 Nâng cao

Trong các dãy số dưới đây, dãy số nào là cấp số nhân? Hãy xác định công bội của cấp số nhân đó.

a) Dãy số 1, -2, 4, -8, 16, -32, 64

b) Dãy số (un) với un=n.6n+1

c) Dãy số (vn) với vn=(1)n.32n

d) Dãy số (xn) với xn=(4)2n+1

Phương pháp giải:

Dãy số (un) là cấp số nhân thì un+1=qun với q không đổi.

Hướng dẫn giải:

a) Dãy số đã cho là một cấp số nhân với công bội q = -2.

b) un+1un=(n+1)6n+1n.6n=6(n+1)n với mọi n ≥ 1.

Do 6(n+1)n không phải là hằng số nên (un) không phải là cấp số nhân.

c) vn+1vn=(1)n+1.32(n+1)(1)n.32n=1.32n+232n=9 với mọi n ≥ 1.

Suy ra (vn) là một cấp số nhân với công bội q = -9.

d) xn+1xn=(4)2n+3(4)2n+1=(4)2n+1.(4)2(4)2n+1=16 với mọi n ≥ 1.

Suy ra (xn) là một cấp số nhân với công bội q = 16.

2. Giải bài 30 trang 120 SGK Đại số & Giải tích 11 Nâng cao

Trong mỗi câu sau, hãy đánh dấu “x” vào phần kết luận mà em cho là đúng:

a) Mỗi cấp số nhân có số hạng đầu dương và công bội 0 < q < 1, là một dãy số

 Tăng

 Giảm

 Không tăng cũng không giảm

b) Mỗi cấp số nhân có số hạng đầu dương và công bội q > 1 là một dãy số

 Tăng

 Giảm

 Không tăng cũng không giảm

Phương pháp giải:

Dựa vào định nghĩa cấp số nhân để chọn đáp án đúng.

Hướng dẫn giải:

a)  Giảm

b)  Tăng

3. Giải bài 31 trang 121 SGK Đại số & Giải tích 11 Nâng cao

Cho cấp số nhân (un) có công bội q < 0. Biết u2=4 và u4=9, hãy tìm u1.

Phương pháp giải:

Sử dụng công thức số hạng tổng quát của cấp số nhân un=u1qn1

Hướng dẫn giải:

Ta có:

{u2=4u4=9{u1q=4(1)u1q3=9(2)

Lấy (2) chia (1) ta được: q2=94q=32 (vì q < 0)

Từ (1) suy ra u1=4q=83

4. Giải bài 32 trang 121 SGK Đại số & Giải tích 11 Nâng cao

Một cấp số nhân có năm số hạng mà hai số hạng đầu tiên là những số dương, tích của số hạng đầu và số hạng thứ ba bằng 1, tích của số hạng thứ ba và số hạng cuối bằng 116. Hãy tìm cấp số nhân đó. 

Phương pháp giải:

Sử dụng tính chất của cấp số nhân: uk+1uk1=u2k

Hướng dẫn giải:

Với mỗi n{1,2,3,4,5}, kí hiệu un là số hạng thứ n của cấp số nhân đã cho.

Vì u1>0,u2>0 nên cấp số nhân (un) có công bội q=u2u1>0.

Do đó un>0n{1,2,3,4,5}.

Từ đó:

1=u1.u3=u22u2=1116=u3.u5=u24u4=14u23=u2.u4=14u3=12

Do đó u1=1u3=2 và u5=116:u3=18

Vậy cấp số nhân cần tìm là: 2,1,12,14,18

5. Giải bài 33 trang 121 SGK Đại số & Giải tích 11 Nâng cao

Cho cấp số nhân (un) với công bội q ≠ 0 và u10. Cho các số nguyên dương m và k, với m ≥ k. Chứng minh rằng um=uk.qmk

Áp dụng:

a) Tìm công bội q của cấp số nhân (un) có u4=2 và u7=686.

b) Hỏi có tồn tại hay không một cấp số nhân (un) mà u2=5 và u22=2000?

Phương pháp giải:

Sử dụng công thức tính số hạng tổng quát của cấp số nhân: un=u1qn1

Hướng dẫn giải:

Ta có:

um=u1.qm1(1)uk=u1.qk1(2)

Lấy (1) chia (2) ta được:

umuk=qmkum=uk.qmk

Áp dụng:

Ta có:

u7=u4q74686=2.q3q3=343q=7

b) Không tồn tại. Thật vậy,

Giả sử ta có

u22=u2q2222000=5.q20q20=400<0

(vô lí)

Vậy không tồn tại cấp số nhân như trên.

6. Giải bài 34 trang 121 SGK Đại số & Giải tích 11 Nâng cao

Hãy tìm số hạng tổng quát của cấp số nhân (un) , biết rằng u3=5 và u6=135.

Phương pháp giải:

- Sử dụng kết quả bài 33: um=uk.qmkqmk=umuk

- Công thức số hạng tổng quát của cấp số nhân: un=u1qn1

Hướng dẫn giải:

Gọi q là công bội của cấp số nhân đã cho.

Ta có:

q3=u6u3=1355=27q=35=u3=u1.q2=9u1u1=59

Số hạng tổng quát: un=59.(3)n1=5.(3)n3

7. Giải bài 35 trang 121 SGK Đại số & Giải tích 11 Nâng cao

Chu kì bán rã của nguyên tố phóng xạ poloni 210 là 138 ngày (nghĩa là sau 138 ngày khối lượng của nguyên tố chỉ còn một nửa). Tính (chính xác đến hàng phần trăm) khối lượng còn lại của 20 gam poloni 210 sau 7314 ngày (khoảng 20 năm).

Phương pháp giải:

- Kí hiệu un (gam) là khối lượng còn lại của 20 gam poloni sau n chu kì bán rã.

- Tìm các yếu tố của cấp số nhân như u1 và q.

- Từ đó tính số hạng u53.

Hướng dẫn giải:

Kí hiệu un (gam) là khối lượng còn lại của 20 gam poloni sau n chu kì bán rã.

Sau 1 chu kì bán rã thì u1=202=10(gam)

Ta có 7314 ngày gồm 7314 : 138 = 53 chu kì bán rã.

Như thế, theo đề bài, ta cần tính u53.

Từ giả thiết của bài toán suy ra dãy số (un) là một cấp số nhân với số hạng đầu u1=10 và công bội q=12.

Do đó:

u53=10.(12)522,22.1015(gam)

8. Giải bài 36 trang 121 SGK Đại số & Giải tích 11 Nâng cao

Tính các tổng sau:

a) Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng 18, số hạng thứ hai bằng 54 và số hạng cuối bằng 39 366;

b) Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng 1256, số hạng thứ hai bằng 1512 và số hạng cuối bằng 11048576

Phương pháp giải:

- Tính q=u2u1

- Tính số các số hạng của cấp số nhân theo công thức un=u1qn1

- Tính tổng Sn=u1(1qn)1q

Hướng dẫn giải:

Gọi q là công bội của cấp số nhân đã cho.

Ta có: q=u2u1=5418=3

Giả sử cấp số nhân có n số hạng ta có:

39366=un=u1.qn1=18.3n13n1=3936618=2187=37n=8S8=u1.1q81q=18.13813=59040

b) Ta có:

q=u2u1=12un=u1.qn111048576=1256.(12)n1(12)n1=14096=(12)12n1=12n=13S13=1256.1(12)131(12)=27311048576

9. Giải bài 37 trang 121 SGK Đại số & Giải tích 11 Nâng cao

Số đo bốn góc của một tứ giác lồi lập thành một cấp số nhân. Hãy tìm bốn góc đó, biết rằng số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất.

Phương pháp giải:

- Sử dụng tổng số đo các góc của một tứ giác bằng 360o

- Công thức số hạng tổng quát tìm q: un=u1qn1

- Công thức tổng n số hạng đầu tìm số đo góc nhỏ nhất: Sn=u1(1qn)1q

Hướng dẫn giải:

Kí hiệu A, B, C, D là số đo bốn góc (tính theo đơn vị độ) của tứ giác lồi đã cho.

Không mất tổng quát, giả sử A ≤ B ≤ C ≤ D.

Khi đó, từ giả thiết của bài toán ta có D = 8A, và A, B, C, D theo thứ tự đó lập thành một cấp số nhân.

Gọi q là công bội của cấp số nhân đó, ta có :

8A=D=A.q3q3=8q=2

Do đó 3600=A+B+C+D=A.12412=15AA=240

Suy ra B=A.2=480,C=A.22=960 và D=A.23=192

10. Giải bài 38 trang 121 SGK Đại số & Giải tích 11 Nâng cao

Hãy chọn những khẳng định đúng trong các khẳng định dưới đây:

a) Nếu các số thực a, b, c mà abc ≠ 0, theo thứ tự đó lập thành một cấp số cộng với công sai khác 0 thì các số 1a,1b,1c theo thứ tự đó cũng lập thành một cấp số cộng.

b) Nếu các số thực a, b, c mà abc ≠ 0, theo thứ tự đó lập thành một cấp số nhân thì các số 1a,1b,1c theo thứ tự đó cũng lập thành một cấp số nhân.

c) 1+π+π2+...+π100=π1001π1

Phương pháp giải:

a) Dãy số (un) được gọi là 1 cấp số cộng nếu un+1=un+d,nN với d là một hằng số.

b) Dãy số (un) là cấp số nhân thì un+1=qun với q không đổi.

c) Sử dụng công thức tổng cấp số nhân: Sn=u1(1qn)1q

Hướng dẫn giải:

a) Sai vì 1, 2, 3 là cấp số cộng nhưng 1,12,13 không là cấp số cộng.

b) Đúng vì nếu a, b, c là cấp số nhân công bội q ≠ 0 thì 1a,1b,1c là cấp số nhân công bội 1q.

c) Sai vì dãy 1,π,π2,...π100 là một CSC có 101 số hạng và u1=1,q=π.

Tổng 101 số hạng trên là:

S101=1+π+π2+...+π100

=1.(1π101)1π =π1011π1

11. Giải bài 39 trang 122 SGK Đại số & Giải tích 11 Nâng cao

Các số x + 6y, 5x + 2y, 8x + y theo thứ tự đó lập thành một cấp số cộng; đồng thời, các số x – 1, y + 2, x – 3y theo thứ tự đó lập thành một cấp số nhân. Hãy tìm x và y.

Phương pháp giải:

- Sử dụng tính chất cấp số cộng: uk+1+uk1=2uk

- Tính chất cấp số nhân: uk+1.uk1=u2k

- Lập hệ phương trình ẩn x, y.

- Giải hệ và kết luận.

Hướng dẫn giải:

Vì các số x + 6y, 5x + 2y, 8x + y theo thứ tự đó lập thành một cấp số cộng nên:

2(5x+2y)=(x+6y)+(8x+y) 10x+4y=9x+7y x=3y(1)

Vì các số x – 1, y + 2, x – 3y theo thứ tự đó lập thành một cấp số nhân nên:

(y+2)2=(x1)(x3y) (2)

Thế (1) vào (2), ta được:

(y+2)2=(3y1)(3y3) (y+2)2=0y=2.

Từ đó x = -6.

12. Giải bài 40 trang 122 SGK Đại số & Giải tích 11 Nâng cao

Cho cấp số cộng (un) với công sai khác 0. Biết rằng các số u1u2, u2u3 và u3u1 theo thứ tự đó lập thành một cấp số nhân với công bội q ≠ 0. Hãy tìm q.

Phương pháp giải:

- Định nghĩa cấp số nhân: un=qun1

- Sử dụng tính chất cấp số cộng: uk+1+uk1=2uk

Hướng dẫn giải:

Vì cấp số cộng (un) có công sai khác 0 nên các số u1, u2, u3 đôi một khác nhau

u1.u20 và q1.

Vì u1u2, u2u3 và u3u1 theo thứ tự đó lập thành một cấp số nhân nên ta có:

{u2u3=q.u1u2u3u1=q2.u1u2{u3=qu1(1)u3=q2u2(2)

Lấy (2) chia (1) ta được: 1=qu2u1u1=qu2

Vì u1,u2,u3 là một cấp số cộng nên u1+u3=2u2

qu2+q2u2=2u2 u2(q+q2)=2u2 q+q2=2 q2+q2=0

[q=1(loại vì q1)q=2

13. Giải bài 41 trang 122 SGK Đại số & Giải tích 11 Nâng cao

Số hạng thứ hai, số hạng đầu và số hạng thứ ba của một cấp số cộng với công sai khác 0 theo thứ tự đó lập thành một cấp số nhân. Hãy tìm công bội của cấp số nhân đó.

Phương pháp giải:

- Sử dụng tính chất cấp số cộng: uk+1+uk1=2uk

- Sử dụng số hạng tổng quát của cấp số nhân: un=u1qn1

Hướng dẫn giải:

Kí hiệu (un) là cấp số cộng đã cho và gọi q là công bội của cấp số nhân u2, u1, u3.

Vì cấp số cộng (un) có công sai khác 0 nên các số u1, u2, u3 đôi một khác nhau, suy ra q0,q1,u20

Do u2, u1, u3 là CSN nên u1 = u2q, u3 = u2q2

Do u1, u2, u3 là CSC nên:

u1 + u3 = 2u2

u2q+u2q2=2u2 u2(q+q2)=2u2 q2+q2=0(vì u20) [q=1(loi)q=2(nhn)

14. Giải bài 42 trang 122 SGK Đại số & Giải tích 11 Nâng cao

Hãy tìm ba số hạng đầu tiên của một cấp số nhân, biết rằng tổng của chúng bằng 1489 và đồng thời các số hạng đó tương ứng là số hạng đầu, số hạng thứ tư và số hạng thứ tám của một cấp số cộng.

Phương pháp giải:

- Sử dụng số hạng tổng quát của cấp số cộng: un=u1+(n1)d

- Mở rộng: um=uk+(mk)d

- Định nghĩa cấp số nhân: un=qun1

Hướng dẫn giải:

Kí hiệu u1, u2, u3 lần lượt là số hạng thứ nhất, thứ hai và thứ ba của cấp số nhân; gọi q là công bội của cấp số nhân đó.

Gọi d là công sai của cấp số cộng nhận u1, u2 và u3 tương ứng là số hạng thứ nhất, thứ tư và thứ tám.

Nếu u1=0u2=u3=0u1+u2+u3=01489 (mâu thuẫn)

Do đó u10.

Theo bài ra ta có: 

{u2=u1q=u1+3du3=u2q=u2+4d{u1qu1=3du2qu2=4d{u1(q1)=3d(1)u2(q1)=4d(2)

Xét hai trường hợp sau:

+ Trường hợp 1: q ≠ 1.

Khi đó (1) và (2) suy ra d ≠ 0 (do u≠ 0) và q=u2u1=43

Từ đó:

1489=u1+u2+u3=u1.1q31q=u1.1(43)3143=u1.379u1=4u2=u1q=163u3=u2q=649

Ta có ba số vừa tìm được ở trên là các số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng có công sai d=49.

+ Trường hợp 2: q = 1.

Khi đó u1=u2=u3

1489=u1+u2+u3=3u1 u1=14827

Ba số vừa tìm được ở trên là các số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng với công sai d = 0.

Vậy có hai bộ ba số cần tìm là:

u1=4,u2=163,u3=649 và u1=u2=u3=14827.

15. Giải bài 43 trang 122 SGK Đại số & Giải tích 11 Nâng cao

Cho dãy số (un) xác định bởi:

u1=1un+1=5un+8 với mọi n ≥ 1.

a) Chứng minh rằng dãy số (vn), với vn = un + 2, là một cấp số nhân. Hãy tìm số hạng tổng quát của cấp số nhân đó.

b) Dựa vào kết quả phần a, hãy tìm số hạng tổng quát của dãy số (un).

Phương pháp giải:

a) Cộng cả hai vế của đẳng thức đã cho với 2 để làm xuất hiện vn+1 và vn.

b) Sử dụng mối quan hệ giữa vnun kết hợp với số hạng tổng quát đã tìm được ở câu a để suy ra un.

Hướng dẫn giải:

Với mọi n ≥ 1, ta có :

un+1=5un+8 un+1+2=5un+10 un+1+2=5(un+2) vn+1=5vn

Do đó (vn) là một cấp số nhân với số hạng đầu v1=u1+2=3 và công bội q = 5.

Số hạng tổng quát: vn=3.5n1

b) vn=un+2

un=vn2=3.5n12 với mọi n ≥ 1.

Ngày:04/11/2020 Chia sẻ bởi:

CÓ THỂ BẠN QUAN TÂM