Toán 11 Ôn tập chương 3: Dãy số. Cấp số cộng và Cấp số nhân

Nội dung bài ôn tập chương Dãy số, Cấp số cộng và Cấp số nhân sẽ giúp các em hệ thống hóa lại toàn bộ kiến thức đã được học ở Chương 3 Đại số và Giải tích 11. Bên cạnh đó các em có thể đánh giá mức độ hiểu bài của mình thông qua bài kiểm tra Trắc nghiệm với những câu hỏi có mức độ khó từ cơ bản đến nâng cao.

Toán 11 Ôn tập chương 3: Dãy số. Cấp số cộng và Cấp số nhân

1. Tóm tắt lý thuyết

1.1. Phương pháp quy nạp toán học

Để chứng minh những mệnh đề liên quan đến số nguyên dương \(n\) là đúng với mọi \(n\) mà không thể thử trực tiếp được thì có thể làm như sau:

  • Bước 1: Kiểm tra rằng mệnh đề đúng với \(n = 1\).
  • Bước 2: Giả thiết rằng mệnh đề đúng với một số tự nhiên bất kỳ \(n = k \ge 1\) (gọi là giả thiết quy nạp). Bằng kiến thức đã biết và giả thiết quy nạp, chứng minh rằng mệnh đề đó cũng đúng với \(n = k + 1\).

1.2. Dãy số

a. Định nghĩa

Một hàm số \(u\) xác định trên tập hợp các số nguyên dương \({\mathbb{N}^*}\) được gọi là một dãy số vô hạn (hay còn gọi tắt là dãy số)

Người ta thường viết dãy số dưới dạng khai triển \({u_1},{u_2},...,{u_n},...,\) trong đó \({u_n} = u\left( n \right)\) hoặc viết tắt là \(\left( {{u_n}} \right)\).

Số hạng \({u_1}\) được gọi là số hạng đầu, \({u_n}\) là số hạng tổng quát (số hạng thứ \(n\)) của dãy số.

b. Dãy số tăng, dãy số giảm

- Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số tăng nếu ta có \({u_{n + 1}} > {u_n}\) với mọi \(n \in {\mathbb{N}^*}\).

- Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số giảm nếu ta có \({u_{n + 1}} < {u_n}\) với mọi \(n \in {\mathbb{N}^*}\).

- Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số hằng (hoặc dãy số không đổi) nếu ta có \({u_{n + 1}} = {u_n}\) với mọi \(n \in {\mathbb{N}^*}\).

c. Dãy số bị chặn

- Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu tồn tại một số \(M\) sao cho \({u_n} \le M,\forall n \in {\mathbb{N}^*}\).

- Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn dưới nếu tồn tại một số \(m\) sao cho \({u_n} \ge m,\forall n \in {\mathbb{N}^*}\).

- Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số \(M\),\(m\) sao cho \(m \le {u_n} \le M,\forall n \in {\mathbb{N}^*}\).

1.3. Cấp số cộng

a. Định nghĩa

Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi \(d\).

Số không đổi \(d\) được gọi là công sai của cấp số cộng.

Đặc biệt, khi \(d = 0\) thì cấp số cộng là một dãy số không đổi (tất cả các số hạng đều bằng nhau).

b. Tính chất

- Nếu \(\left( {{u_n}} \right)\) là một cấp số cộng với công sai \(d\), ta có công thức truy hồi

\({u_{n + 1}} = {u_n} + d,\;n \in {\mathbb{N}^*}.\)

- Cấp số cộng \(\left( {{u_n}} \right)\) là một dãy số tăng khi và chỉ khi công sai \(d > 0\).

- Cấp số cộng \(\left( {{u_n}} \right)\) là một dãy số giảm khi và chỉ khi công sai \(d < 0\).

- Nếu cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng tổng quát \({u_n}\) được xác định bởi công thức:

\({u_n} = {u_1} + (n - 1)d,\;\forall n \ge 2.\)

- \(d = \dfrac{{{u_p} - {u_q}}}{{p - q}};{u_1} = {u_p} - \left( {p - 1} \right)d\)

- Trong một cấp số cộng \(\left( {{u_n}} \right)\), mỗi số hạng (trừ số hạng đầu và cuối) đều là trung bình cộng của hai số hạng đứng kề với nó, nghĩa là

\({u_k} = \dfrac{{{u_{k - 1}} + {u_{k + 1}}}}{2},k \ge 2\)

Tổng quát: Nếu \(\left( {{u_n}} \right)\) là cấp số cộng thì

\({u_p} = \dfrac{{{u_{p - k}} + {u_{p + k}}}}{2},\;1 \le k < p\).

- Cho một cấp số cộng \(\left( {{u_n}} \right)\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\).

Khi đó:

\({S_n} = \dfrac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\)

1.4. Cấp số nhân

a. Định nghĩa

Cấp số nhân là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đều bằng tích của số hạng đứng ngay trước nhân với một số không đổi q.

Số không đổi q được gọi là công bội của cấp số nhân.

Khi \(q = 1\) thì cấp số nhân là một dãy số không đổi (tất cả các số hạng đều bằng nhau).

Khi \(q = 0\) thì cấp số nhân có dạng \({u_1},0,0,0, \ldots ,0, \ldots \)

Khi \({u_1} = 0\) thì với mọi \(q\) cấp số nhân có dạng \(0,0,0,0, \ldots ,0, \ldots \)

b. Tính chất

- Nếu \(\left( {{u_n}} \right)\) là một cấp số nhân với công bội \(q\), ta có công thức truy hồi

\({u_{n + 1}} = {u_n}.q,\;n \in {\mathbb{N}^*}\)

- Nếu cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q  thì số hạng tổng quát \({u_n}\) được xác định bởi công thức

\({u_n} = {u_1}{q^{n - 1}},\;\forall n \ge 2.\)    

- \({u_m} = {u_k}.{q^{m - k}},k < m;{q^{m - k}} = \dfrac{{{u_m}}}{{{u_k}}},k < m.\)

- Trong một cấp số nhân \(\left( {{u_n}} \right)\), bình phương mỗi số hạng (trừ số hạng đầu và cuối) đều là tích hai số hạng đứng kề với nó, nghĩa là

\(u_k^2 = {u_{k - 1}}.{u_{k + 1}},\,\,\,k \ge 2\)

Tổng quát: Nếu \(\left( {{u_n}} \right)\) là cấp số nhân thì

\(u_m^2 = {u_{m - k}}.{u_{m + k}},k < m\)

- Cho một cấp số nhân \(\left( {{u_n}} \right)\) với công bội \(q \ne 1.\) Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\). Khi đó:

\({S_n} = \dfrac{{{u_1}(1 - {q^n})}}{{1 - q}}\) hoặc \({S_n} = \dfrac{{{u_1} - {u_{n + 1}}}}{{1 - q}}\)

2. Bài tập minh họa

2.1. Bài tập 1

Chứng minh rằng với mọi \(n\in {\mathbb N}^*\), ta có: \(13^n-1\) chia hết cho \(6\)

Hướng dẫn giải

Với \(n = 1\), ta có: \(13^1– 1 = 13– 1 = 12 \,\,⋮\,\, 6\)

Giả sử: \(13^k- 1\) \( ⋮ \) \(6\) với mọi \(k ≥ 1\)

Ta chứng minh: \(13^{k+1}– 1\) chia hết cho \(6\)

Thật vậy:

\({13^{k + 1}}-{\rm{ }}1{\rm{ }} = {\rm{ }}{13^{k + 1}}-{\rm{ }}{13^k} + {\rm{ }}{13^k} - 1{\rm{ }} \)

\(\begin{array}{l}
= \left( {{{13}^{k + 1}} - {{13}^k}} \right) + \left( {{{13}^k} - 1} \right)\\
= {13^k}\left( {13 - 1} \right) + \left( {{{13}^k} - 1} \right)
\end{array}\)

\(= {\rm{ }}{12.13^k} + {13^k}-{\rm{ }}1\)

Vì : \(12.13^k\) \(⋮\) \(6\) và \(13^k– 1\) \(⋮\) \(6\) (theo giả thiết quy nạp)

Nên : \(13^{k+1}– 1\) \(⋮\) \(6\)

Vậy \(13^n-1\) chia hết cho \(6\) với mọi \(n \in N^*\).

2.2. Bài tập 2

Xét tính tăng, giảm và bị chặn của các dãy số \((u_n)\), biết: \({u_n} = \sqrt {n + 1}  - \sqrt n \)

Hướng dẫn giải

Ta có:

\({u_n} = \sqrt {n + 1}  - \sqrt n  \) \( = \frac{{\left( {\sqrt {n + 1}  - \sqrt n } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}}{{\sqrt {n + 1}  + \sqrt n }} \)\(= {{n + 1 - n} \over {\sqrt {n + 1}  + \sqrt n }} \) \(= {1 \over {\sqrt {n + 1}  + \sqrt n }}\)

Xét hiệu:

\(\eqalign{
& {u_{n + 1}} - {u_n} \cr&= {1 \over {\sqrt {(n + 1) + 1} + \sqrt {n + 1} }} - {1 \over {\sqrt {n + 1} + \sqrt n }} \cr 
& = {1 \over {\sqrt {n + 2} + \sqrt {n + 1} }} - {1 \over {\sqrt {n + 1} + \sqrt n }} \cr} \) 

Ta có:

\(\left\{ \matrix{
\sqrt {n + 2} > \sqrt {n + 1} \hfill \cr 
\sqrt {n + 1} > \sqrt n \hfill \cr} \right. \)

\(\Rightarrow \sqrt {n + 2} + \sqrt {n + 1} > \sqrt {n + 1} + \sqrt n \)

\( \Rightarrow {1 \over {\sqrt {n + 2}  + \sqrt {n + 1} }} < {1 \over {\sqrt {n + 1}  + \sqrt n }} \)

\(\Rightarrow {u_{n + 1}} - {u_n} < 0\)

⇒ un là dãy số giảm.

Mặt khác: \({u_n} = {1 \over {\sqrt {n + 1}  + \sqrt n }} > 0,\forall n \in N^*\) \(\Rightarrow\) un là dãy số bị chặn dưới.

Ta lại có: với n ≥ 1 thì \(\sqrt {n + 1}  + \sqrt n  \ge \sqrt 2  + 1\)

\(\Rightarrow {u_n} = {1 \over {\sqrt {n + 1}  + \sqrt n }} \le {1 \over {\sqrt 2  + 1}}\)

Suy ra: \(u_n\) là dãy số bị chặn trên.

Vậy \(u_n\) là dãy số giảm và bị chặn.

2.3. Bài tập 3

Tìm số hạng đầu \(u_1\) và công sai \(d\) của các cấp số cộng (un) biết: 

\(\left\{ \matrix{{u_7} + {u_{15}} = 60 \hfill \cr u_4^2 + u_{12}^2 = 1170 \hfill \cr} \right.\)

Hướng dẫn giải

Ta có:

\(\left\{ \matrix{
{u_7} + {u_{15}} = 60 \hfill \cr 
u_4^2 + u_{12}^2 = 1170 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
({u_1} + 6d) + ({u_1} + 14d) = 60\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1) \hfill \cr 
{({u_1} + 3d)^2} + {({u_1} + 11d)^2} = 1170\,\,\,\,(2) \hfill \cr} \right.\)

\((1) ⇔ 2u_1+ 20d = 60 ⇔ u_1= 30 – 10d\) thế vào \((2)\)

\((2) ⇔[(30 – 10d) + 3d]^2+ [(30 – 10d) + 11d]^2= 1170\)

\(⇔ (30 – 7d)^2+ (30 + d)^2= 1170\)

\(⇔900 – 420d + 49d^2+ 900 + 60d + d^2= 1170\)

\(⇔ 50d^2– 360d + 630 = 0\) 

\( \Leftrightarrow \left[ \matrix{
d = 3 \Rightarrow {u_1} = 0 \hfill \cr 
d = {{21} \over 5} \Rightarrow {u_1} = - 12 \hfill \cr} \right.\)

Vậy \(\left\{ \matrix{{u_1} = 0 \hfill \cr d = 3 \hfill \cr} \right.\) hoặc \(\left\{ \matrix{{u_1} = - 12 \hfill \cr d = {{21} \over 5} \hfill \cr} \right.\)

2.4. Bài tập 4

Tìm số hạng đầu \(u_1\) và công bội của các cấp số nhân \((u_n)\), biết:

\(\left\{ \matrix{{u_4} - {u_2} = 72 \hfill \cr {u_5} - {u_3} = 144 \hfill \cr} \right.\)

Hướng dẫn giải

Ta có:

\(\begin{array}{l}
\,\,\,\,\,\left\{ \begin{array}{l}
{u_4} - {u_2} = 72\\
{u_5} - {u_3} = 144
\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}
{u_1}{q^3} - {u_1}q = 72\\
{u_1}{q^4} - {u_1}{q^2} = 144
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{u_1}q\left( {{q^2} - 1} \right) = 72\\
{u_1}{q^2}\left( {{q^2} - 1} \right) = 144
\end{array} \right. \\\Rightarrow \frac{{{u_1}{q^2}\left( {{q^2} - 1} \right)}}{{{u_1}q\left( {{q^2} - 1} \right)}} = \frac{{144}}{{72}} \\\Leftrightarrow q = \frac{{144}}{{72}} = 2\\
\Rightarrow {u_1}.2.\left( {{2^2} - 1} \right) = 72 \\\Leftrightarrow {u_1}.6 = 72 \Leftrightarrow {u_1} = 12
\end{array}\)

Vậy \(u_1= 12\) và \(q = 2\)

3. Luyện tập

3.1. Bài tập tự luận

Câu 1: Chứng minh các bất đẳng thức sau

a) \({3^{n - 1}} > n\left( {n + 2} \right)\) với \(n \ge 4\)

b) \({2^{n - 3}} > 3n - 1\) với \(n \ge 8.\)

Câu 2: Cho dãy số\(\left( {{u_n}} \right) :\)

 \({\rm{                         }}\left\{ \begin{array}{l}{u_1} = 1,{u_2} = 2\\{u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 1{\rm{ voi n}} \ge {\rm{2}}{\rm{.}}\end{array} \right.\)

a) Viết năm số hạng đầu của dãy số

b) Lập dãy số \(\left( {{v_n}} \right)\) với \({v_n} = {u_{n + 1}} - {u_n}.\) Chứng minh dãy số \(\left( {{v_n}} \right)\) là cấp số cộng

c) Tìm công thức tính \({u_n}\) theo \(n\)

Câu 3: Cho dãy số \(\left( {{u_n}} \right):\) \(\left\{ \begin{array}{l}{u_1} = \dfrac{1}{3}\\{u_{n + 1}} = \dfrac{{\left( {n + 1} \right){u_n}}}{{3n}}{\rm{    voi }}n \ge 1.\end{array} \right.\)

a) Viết năm số hạng đầu của dãy số

b) Lập dãy số \(\left( {{v_n}} \right)\) với \({v_n} = \dfrac{{{u_n}}}{n}.\) Chứng minh dãy số \(\left( {{v_n}} \right)\) là cấp số nhân.

c) Tìm công thức tính \({u_n}\) theo \(n\)

Câu 4: Ba số có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, hoặc là các số hạng thứ 2, thứ 9 và thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu của cấp số cộng để tổng của chúng là 820 ?

3.2. Bài tập trắc nghiệm

Câu 1: Cho dãy số \(u_{n} = 4^{n}+n\) với mọi \(n≥1\). Khi đó số hạng \(u_{n+1}\) của dãy \((u_{n})\) là:

A. \(4^{n} + n + 1 \)

B. \(4^{n+1} + n\)

C. \(4^{n} + 1\)  

D. \(4^{n+1} + n + 1\)

Câu 2: Tính tổng 8 số hạng đầu tiên của dãy số \((a_{n}): a_{n} =2.3^{n}\)

A. 19680      

B. 6560

C. 9840      

D. 35360

Câu 3: Tìm m để phương trình \(x^{4}-(3m+5) x^{2}+(m+1)^{2}=0\) có bốn nghiệm lập thành một cấp số cộng.

A. \(m=1\)      

B. \(m=5\)

C. \(m=\frac{3}{2}\)   

D. \(m=\frac{25}{4}\)

Câu 4: Giả sử các số \(5x-y, 2x+3y, x+2y\) lập thành một cấp số cộng, còn các số \((y+1)^{2}, xy + 1 và (x-1)^{2}\) lập thành cấp số nhân. Hiệu của \(x, y\) dương bằng?

A. \(1\)     

B. \(2\)      

C. \(\frac{5}{3}\)    

D. \(\frac{1}{3}\)

Câu 5: Từ 0 giờ đến 12 giờ trưa, đồng hồ đánh bao nhiêu tiếng chuông nếu nó chỉ đánh chuông báo giờ và tiếng chuông bằng số giờ? 

A. 76      

B. 78      

C. 80      

D. 82

3.3. Trắc nghiệm Online

Các em hãy luyện tập bài trắc nghiệm Ôn tập chương 3: Dãy số. Cấp số cộng và Cấp số nhân Toán 11 sau để nắm rõ thêm kiến thức bài học.

Trắc Nghiệm

4. Kết luận

Qua bài học này, các em nắm được một số nội dung chính như sau:

  • Nắm được phương pháp chứng minh quy nạp
  • Vận dụng chứng minh các mệnh đề chứa biến lấy giá trị trên tập N.
  • Vận dụng vào việc giải một số bài tập đơn giản trong SGK.
Ngày:15/08/2020 Chia sẻ bởi:

CÓ THỂ BẠN QUAN TÂM