Toan 9 Ôn tập chương 2: Hàm số bậc nhất
Sau đây mời các em học sinh lớp 9 cùng tìm hiểu bài Ôn tập hàm số bậc nhất. Bài giảng dưới đây đã được eLib biên soạn khái quát lý thuyết cần nhớ, đồng thời có các bài tập được tổng hợp đầy đủ các dạng toán liên quan giúp các em dễ dàng nắm được kiến thức trọng tâm của bài.
Mục lục nội dung
1. Tóm tắt lý thuyết
1.1. Khái niệm
Hàm số bậc nhất là hàm số được viết dưới dạng \(y=ax+b(a\neq 0)\)
Hàm số đồng biến trên \(\mathbb{R}\) khi a dương.
Hàm số nghịch biến trên \(\mathbb{R}\) khi a âm.
1.2. Đồ thị hàm số \(y=ax+b(a\neq 0)\)
Đồ thị hàm số bậc nhất là một đường thẳng:
Cắt trục tung tại điểm có tung độ bằng b
Song song với đường thẳng \(y=ax\), và cũng chính là đường thẳng \(y=ax\) nếu \(b=0\)
1.3. Vị trí tương đối của hai đường thẳng
Chúng ta có 3 vị trí của hai đường thẳng \(y=ax+b;y=a'x+b'(a;a'\neq 0)\)
Song song: \(\left\{\begin{matrix} a=a'\\ b\neq b' \end{matrix}\right.\)
Trùng nhau: \(\left\{\begin{matrix} a=a'\\ b= b' \end{matrix}\right.\)
Cắt nhau: \(a\neq a'\)
Lưu ý: Đối với vị trí cắt nhau, ta cũng có trường hợp đó là hai đường thẳng vuông góc với nhau
khi đó: \(a.a'=-1\)
1.4. Hệ số góc
Về phương trình đường thẳng dạng chuẩn đó là \(y=ax+b(a\neq 0)\), ta có hệ số góc của phương trình này chính là \(a\)
Đôi khi, phương trình đường thẳng được viết dưới dạng \(ax+by+c=0\)
Thì ta sẽ biến đổi một chút thành dạng chuẩn:
\(ax+by+c=0(b\neq 0)\)\(\Leftrightarrow by=-ax-c\)\(\Leftrightarrow y=-\frac{a}{b}x-\frac{c}{b}\); hệ số góc của phương trình này chính là \(\frac{-a}{b}\).
2. Bài tập minh hoạ
2.1. Bài tập 1
Cho hàm số \(y=ax-2\). Xác định hệ số góc của hàm số đó, biết rằng hàm số đi qua điểm \(A(2;4)\). Vẽ đồ thị hàm số đó trên trục tọa độ.
Hướng dẫn giải
Do hàm số đi qua điểm \(A(2;4)\) nên tọa độ của điểm A cũng thuộc đồ thị hàm số.
Thế hoành độ và tung độ của điểm A vào hàm số, ta được:
\(4=a.2-2\)\(\Leftrightarrow a=3\)
Vậy, hàm số được cho có dạng: \(y=3x-2\) với hệ số góc \(a=3\)
Vẽ đồ thị:
Hàm số qua các điểm: \(A(2;4)\); \(B(0;-2)\)
2.2. Bài tập 2
a) Với giá trị nào của m thì hàm số \(y=(m-2)x-6\) đồng biến trên \(\mathbb{R}\)?
b) Với các giá trị nào của n thì hàm số \(y=(4-n)x+2017\) nghịch biến trên \(\mathbb{R}\)?
Hướng dẫn giải
a) Để hàm số \(y=(m-2)x-6\) đồng biến trên \(\mathbb{R}\) thì hệ số góc \(a>0\)
Tức là \(m-2>0\Leftrightarrow m>2\)
Vậy \(m>2\) thì hàm số đồng biến trên \(\mathbb{R}\)
b) Để hàm số \(y=(4-n)x+2017\) nghịch biến trên \(\mathbb{R}\) thì hệ số góc \(a<0\)
Tức là \(4-n<0\Leftrightarrow n>4\)
Vậy \(n>4\) thì hàm số nghịch biến trên \(\mathbb{R}\)
2.3. Bài tập 3
Xác định các hệ số a, b để hai hàm số sau: \(y=ax+(b+3)\) và \(y=(4-a)x+(b+10)\)
a) Vuông góc
b) Song song
c) Trùng nhau
Hướng dẫn giải
Để các hàm số trên là hàm số bậc nhất, trước hết hệ số góc khác 0
\(\Leftrightarrow \left\{\begin{matrix} a\neq 0\\ a\neq 4 \end{matrix}\right.\)
a) Để hai hàm số vuông góc với nhau, ta có:
\(a(4-a)=-1\Leftrightarrow a^2-4a-1=0\)
\(\Leftrightarrow a=2+\sqrt{5}\) hoặc \(a=2-\sqrt{5}\) thì hai đường thẳng vuông góc với nhau.
b) Để hai hàm số song song với nhau, ta có:
\(\left\{\begin{matrix} a=4-a\\ b+3\neq b+10 \end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} a=2\\ 0.b\neq 7 \end{matrix}\right.\)
Vậy \(a=2\) thì hai đường thẳng song song với nhau.
c) Để hai hàm số trùng nhau, ta có
\(\left\{\begin{matrix} a=4-a\\ b+3=b+10 \end{matrix}\right.\)
Không thể làm cho \(b+3=b+10\) nên hai đường thẳng này không thể trùng nhau với mọi hệ số a, b.
2.4. Bài tập 4
Vẽ các đồ thị sau trên cùng một mặt phẳng tọa độ
\(y=x+2\)
\(y=2x-1\)
\(y=3-x\)
Chứng tỏ rằng tam giác tạo bởi 3 điểm là 3 tọa độ giao nhau của 3 đường thẳng trên là một tam giác vuông.
Hãy dùng đồ thị kiểm chứng lại.
Hướng dẫn giải
Gọi đồ thị \(y=x+2\) là \(d_1\), \(y=2x-1\) là \(d_2\), \(y=3-x\) là \(d_3\)
Hàm số \(d_1\) qua \(A(0;2);B(1;3)\)
Hàm số \(d_2\) qua \(C(0;-1);D(2;3)\)
Hàm số \(d_3\) qua \(E(0;3);F(3;0)\)
Vẽ đồ thị:
Dễ thấy bằng đồ thị, Tam giác MNP vuông tại N.
Vì N là giao điểm của \(d_1\) và \(d_3\)
Ta có tích hệ số góc của \(d_1\) và \(d_3\) là \(1.(-1)=-1\)
2.5. Bài tập 5
Vẽ đường thẳng \(y=6-x\) trên mặt phẳng tọa độ.
Chứng tỏ đường thẳng tạo với hai trục tọa độ và gốc tọa độ thành một tam giác vuông cân. Tính chu vi và diện tích của tam giác vuông cân ấy.
Hướng dẫn giải
Đường thẳng \(y=6-x\) đi qua các điểm \(A(1;5), B(2;4)\)
Chúng ta tìm điểm cắt trục tung của đường thẳng đó là điểm \(C(0;6)\)
Điểm cắt trục hoành là điểm \(D(6;0)\)
Ta có độ lớn đại số của \(OC=OD=6(dvdd)\)
Vậy tam giác OCD vuông cân tại O.
Áp dụng định lý Pytago vào tam giác vuông cân OCD, ta tìm được \(CD=\sqrt{OD^2+OC^2}=\sqrt{6^2+6^2}=6\sqrt{2}(dvdd)\)
Vậy, Chu vi của tam giác OCD là \(OC+OD+CD=12+6\sqrt{2}(dvdd)\)
Diện tích tam giác OCD là \(\frac{1}{2}OD.OC=\frac{1}{2}.6.6=18(dvdt)\)
3. Luyện tập
3.1. Bài tập tự luận
Câu 1
a) Với những giá trị nào của m thì hàm số bậc nhất \(y = (m – 1)x + 3\) đồng biến?
b) Với những giá trị nào của k thì hàm số bậc nhất \(y = (5 – k)x + 1\) nghịch biến?
Câu 2: Tìm giá trị của a để hai đường thẳng \(y = (a – 1)x + 2 \,\,\,(a ≠ 1)\) và \(y = (3 – a)x + 1 \,\,\,(a ≠ 3)\) song song với nhau.
Câu 3: Cho hai hàm số bậc nhất \(y = \left( {k + 1} \right)x + 3\) và \(y = \left( {3 - 2k} \right)x + 1\).
a) Với giá trị nào của k thì đồ thị của hai hàm số là hai đường thẳng song song với nhau?
b) Với giá trị nào của k thì đồ thị của hai hàm số là hai đường thẳng cắt nhau?
c) Hai đường thẳng nói trên có thể trùng nhau được không? Vì sao?
Câu 4: Với những giá trị nào của m thì đồ thị của các hàm số \(y = 12x + \left( {5 - m} \right)\) và \(y = 3x + \left( {3 + m} \right)\) cắt nhau tại một điểm trên trục tung ?
Câu 5: Tìm giá trị của \(a\) để hai đường thẳng \(y = \left( {a - 1} \right)x + 2\) và \(y = \left( {3 - a} \right)x + 1\) song song với nhau.
3.2. Bài tập trắc nghiệm
Câu 1: Đường thẳng d đi qua gốc tọa độ và song song với đường thẳng AB có \(A(2;1);B(1;3)\) có phương trình là:
A. \(y=2x\)
B. \(y=-2x\)
C. \(y=-2x+2\)
D. \(y=2x+2\)
Câu 2: Không vẽ đồ thị, hãy cho biết đa giác được tạo bởi 4 đường thẳng sau là hình gì?
\(d_1:y=2x+1;d_2:y=2x-3;d_3: y=\frac{-1}{2}x+6;d_4:y=\frac{-1}{2}x-1\)
A. Tam giác đều
B. Hình bình hành
C. Hình chữ nhật
D. Hình thang cân
Câu 3: Cho hàm số bậc nhất \(y=ax+3\). Xác định hệ số góc a biết hàm số qua điểm \(A(2;2)\)
A. \(a=\frac{-1}{2}\)
B. \(a=\frac{1}{2}\)
C. \(a=1\)
D. \(a=-1\)
Câu 4: Với giá trị nào của m thì ba hàm số sau đây chỉ có 2 giao điểm?
\(d_1: y=2x-3; d_2: y=2x+m; d_3: y=5x-m^2\)
A. \(m=0\)
B. \(m= -3\)
C. \(m\neq -3\)
D. \(m\neq 0\)
Câu 5: Cho hai đường thẳng \(y=mx+4\) và \(y=(m-1)x+3\)
Giá trị của m để hai đường thẳng vuông góc với nhau là:
A. \(m=-1\)
B. \(m=2\)
C. \(m\neq 0\)
D. Không có m thỏa bài toán
4. Kết luận
Qua bài học này giúp học sinh:
- Hệ thống hóa kiến thức cơ bản của chương.
- Hiểu các khái niệm hàm số, đồ thị của hàm số, khái niệm hàm số bậc nhất y =ax+b, tính chất đồng biến, nghịch biến của hàm số bậc nhất.
- Vẽ thành thạo đồ thị hàm số bậc nhất, xác định góc của đường thẳng y = ax+b và chiều dương của trục Ox.
Tham khảo thêm
- doc Toán 9 Chương 2 Bài 1: Nhắc lại và bổ sung các khái niệm về hàm số
- doc Toán 9 Chương 2 Bài 2: Hàm số bậc nhất
- doc Toán 9 Chương 2 Bài 3: Đồ thị của hàm số y = ax + b (a ≠ 0)
- doc Toán 9 Chương 2 Bài 4: Đường thẳng song song và đường thẳng cắt nhau
- doc Toán 9 Chương 2 Bài 5: Hệ số góc của đường thẳng y = ax + b (a ≠ 0)