Giải bài tập SGK Toán 9 Ôn tập chương 4: Phương trình bậc hai một ẩn
Phần hướng dẫn giải bài tập SGK Ôn tập chương Phương trình bậc hai một ẩn sẽ giúp các em nắm được phương pháp và rèn luyện kĩ năng các dạng bài tập từ SGK Toán 9 Tập hai
Mục lục nội dung
1.1. Giải câu 1 trang 60 SGK Toán 9 tập 2
1.2. Giải câu 2 trang 60 SGK Toán 9 tập 2
1.3. Giải câu 3 trang 61 SGK Toán 9 tập 2
1.4. Giải câu 4 trang 61 SGK Toán 9 tập 2
1.5. Giải câu 5 trang 61 SGK Toán 9 tập 2
2.1. Giải câu 54 trang 63 SGK Toán 9 tập 2
2.2. Giải câu 55 trang 63 SGK Toán 9 tập 2
2.3. Giải câu 56 trang 63 SGK Toán 9 tập 2
2.4. Giải câu 57 trang 63 SGK Toán 9 tập 2
2.5. Giải câu 58 trang 63 SGK Toán 9 tập 2
2.6. Giải câu 59 trang 63 SGK Toán 9 tập 2
2.7. Giải câu 60 trang 64 SGK Toán 9 tập 2
2.8. Giải câu 61 trang 64 SGK Toán 9 tập 2
2.9. Giải câu 62 trang 64 SGK Toán 9 tập 2
2.10. Giải câu 63 trang 64 SGK Toán 9 tập 2
2.11. Giải câu 64 trang 64 SGK Toán 9 tập 2
1. Câu hỏi
1.1. Giải câu 1 trang 60 SGK Toán 9 tập 2
Hãy vẽ đồ thị của các hàm số \(y = 2x^2, y = -2x^2.\) Dựa vào đồ thị để trả lời các câu hỏi sau:
a) Nếu a > 0 thì hàm số \(y = ax^2\) đồng biến khi nào? Nghịch biến khi nào?
Với giá trị nào của x thì hàm số đạt giá trị nhỏ nhất? Có giá trị nào của x để hàm số đạt giá trị lớn nhất không?
Nếu a < 0 thì hàm số đồng biến khi nào? Nghịch biến khi nào? Với giá trị nào của x thì hàm số đạt giá trị lớn nhất? Có giá trị nào của x để hàm số đạt giá trị nhỏ nhất không?
b) Đồ thị của hàm số \(y = ax^2\) có những đặc điểm gì (trường hợp a > 0 , trường hợp a < 0)
Hướng dẫn giải
Vẽ đồ thị:
Câu a:
Nếu a > 0 thì hàm số đồng biến khi x > 0, nghịch biến khi x < 0
Với x = 0 thì hàm số đạt giá trị nhỏ nhất bằng 0. Không có giá trị nào của hàm số để đạt giá trị lớn nhất.
Nếu a < 0 thì hàm số đồng biến khi x < 0, nghịch biến khi x > 0.
Hàm số đạt giá trị lớn nhất y = 0 khi x = 0 . Không có giá trị nào của x để hàm số đạt giá trị nhỏ nhất.
Câu b:
Đồ thị hàm số \(y = ax^2\) là đường cong (đặt tên là parabol) đi qua gốc tọa độ nhận trục tung Oy làm trục đối xứng.
Nếu a > 0 thì đồ thị nằm trên trục hoành, điểm O là điểm thấp nhất đồ thị (gọi là đỉnh parabol).
Nếu a < 0 thì đồ thị nằm bên dưới trục hoành, điểm O là điểm cao nhất của đồ thị.
1.2. Giải câu 2 trang 60 SGK Toán 9 tập 2
Đối với phương trình bậc hai \(ax^2 + bx + c = 0 (a ≠ 0),\) hãy viết công thức tính \(Δ, Δ'.\)
Khi nào thì phương trình vô nghiệm?
Khi nào phương trình có hai nghiệm phân biệt? Viết công thức nghiệm
Khi nào phương trình có nghiệm kép? Viết công thức nghiệm
Vì sao khi a và c trái dấu thì phương trình có hai nghiệm phân biệt?
Hướng dẫn giải
* Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\,\,(a \ne 0)\)
và biệt thức \(\Delta = {b^2} - 4ac\), \(\Delta' = {b'^2} - ac\) với \(b'=\dfrac{b}{2}\)
TH1. Nếu \(\Delta < 0\) (hoặc \(\Delta' < 0)\) thì phương trình vô nghiệm.
TH2. Nếu \(\Delta = 0\) (hoặc \(\Delta' =0)\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = - \dfrac{b}{2a}\) (hoặc \({x_1} = {x_2} = - \dfrac{b'}{a}\) )
TH3. Nếu \(\Delta > 0\) (hoặc \(\Delta' >0)\) thì phương trình có hai nghiệm phân biệt: \({x_{1,2}} = \dfrac{{ - b \pm \sqrt \Delta }}{{2a}}\) (hoặc \({x_{1,2}} = \dfrac{{ - b' \pm \sqrt \Delta ' }}{{a}}\))
* Khi a và c trái dấu thì \(a.c<0\) nên \(\Delta = {b^2} - 4ac>0\), do đó phương trình \(a{x^2} + bx + c = 0\,\,(a \ne 0)\) có hai nghiệm phân biệt.
1.3. Giải câu 3 trang 61 SGK Toán 9 tập 2
Viết hệ thức Vi-et đối với các nghiệm của phương trình bậc hai \(ax^2 + bx + c = 0 (a ≠ 0),\)
Nêu điều kiện để phương trình \(ax^2 + bx + c = 0 (a ≠ 0),\) có một nghiệm bằng 1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình \(1954x^2 + 21x – 1975 = 0\)
Nêu điều kiện để phương trình \(ax^2 + bx + c = 0 (a ≠ 0),\) có một nghiệm bằng -1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình \(2005x^2 + 104x – 1901 = 0\)
Hướng dẫn giải
Hệ thức Vi-ét:
Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:
\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)
Nếu phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm \({x_1}= 1\), còn nghiệm kia là \({x_2}=\dfrac{c}{a}.\)
Áp dụng: Phương trình \(1954x^2 + 21x – 1975 = 0\) có \(a=1954, b=21, c=-1975\) nên \(a+b+c=1954+21+(-1975)=0\), do đó phương trình có một nghiệm \({x_1}= 1\), còn nghiệm kia là \({x_2}=\dfrac{-1975}{1954}.\)
Nếu phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có nghiệm là \({x_1}= -1\), còn nghiệm kia là \({x_2}=\dfrac{-c}{a}\).
Áp dụng: Phương trình \(2005x^2 + 104x – 1901 = 0\) có \(a=2005, b=104, c=-1901\) nên \(a-b+c=2005-104+(-1901)=0\), do đó phương trình có một nghiệm \({x_1}= -1\), còn nghiệm kia là \({x_2}=\dfrac{1901}{2005}.\)
1.4. Giải câu 4 trang 61 SGK Toán 9 tập 2
Nêu cách tìm hai số, biết tổng S và tích P của chúng.
Tìm hai số u và v trong mỗi trường hợp sau:
\(\begin{array}{l}
a)\left\{ \begin{array}{l}
u + v = 3\\
uv = - 8
\end{array} \right.\\
b)\left\{ \begin{array}{l}
u + v = 5\\
uv = 10
\end{array} \right.
\end{array}\)
Hướng dẫn giải
Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) và \({S^2}-{\rm{ }}4P{\rm{ }} \ge {\rm{ }}0\) thì hai số đó là hai nghiệm của phương trình: \({x^2}-{\rm{ }}Sx{\rm{ }} + {\rm{ }}P{\rm{ }} = {\rm{ }}0\)
Câu a
Đặt \(u+v=S,u.v=P\) ta có
\(\left\{ \begin{array}{l}
S = 3\\
P = - 8
\end{array} \right.\)
Ta có: \(S^2-4P=41>0\)
Khi đó \(u,v\) là hai nghiệm của phương trình \(x^2-3x-8=0\)
Ta có: \(\Delta = {\left( { - 3} \right)^2} - 4.1.\left( { - 8} \right) = 41 > 0\)
Nên phương trình có hai nghiệm phân biệt:
\({x_1} = \dfrac{{3 + \sqrt {41} }}{2};{x_2} = \dfrac{{3 - \sqrt {41} }}{2}\)
Suy ra \(u = \dfrac{{3 + \sqrt {41} }}{2};v = \dfrac{{3 - \sqrt {41} }}{2}\)
Hoặc \(u = \dfrac{{3 - \sqrt {41} }}{2};v = \dfrac{{3 + \sqrt {41} }}{2}\)
Câu b
Đặt \(u+v=S,u.v=P\) ta có
\(\left\{ \begin{array}{l}
S = -5\\
P = 10
\end{array} \right.\)
Ta có: \(S^2-4P=25-40=-15<0\) nên không có hai số \(u,v\) thỏa mãn đề bài.
1.5. Giải câu 5 trang 61 SGK Toán 9 tập 2
Nêu cách giải phương trình trùng phương \(ax^4 + bx^2 + c = 0,(a ≠ 0)\)
Hướng dẫn giải
Xét phương trình \(ax^4 + bx^2 + c = 0,(a ≠ 0)\)
Đặt ẩn phụ \(t = x^2\) (1) (điều kiện \(t ≥ 0).\)
Khi đó phương trình đã cho tương đương với một phương trình bậc 2 ẩn t là:
\(at^2 + bt + c = 0\) (2)
Giải phương trình (2) để tìm t, so sánh với điều kiện.
Thay giá trị t thỏa mãn vào (1) để tìm x.
2. Bài tập
2.1. Giải câu 54 trang 63 SGK Toán 9 tập 2
Vẽ đồ thị của hàm số \(\displaystyle y = {1 \over 4}{x^2}\) và \(\displaystyle y = - {1 \over 4}{x^2}\) trên cùng một hệ trục tọa độ
a) Qua điểm \(B(0; 4)\) kẻ đường thẳng song song với trục Ox. Nó cắt đồ thị của hàm số \(\displaystyle y = {1 \over 4}{x^2}\) tại hai điểm M và M’. Tìm hoành độ của M và M’.
b) Tìm trên đồ thị của hàm số \(\displaystyle y = - {1 \over 4}{x^2}\) điểm N có cùng hoành độ với M, điểm N’ có cùng hoành độ với M’. Đường thẳng NN’ có song song với Ox không? Vì sao? Tìm tung độ của N và N’ bằng hai cách:
- Ước lượng trên hình vẽ:
- Tính toán theo công thức.
Phương pháp giải
Các bước vẽ đồ thị hàm số \(y=a{x^2}\)
- Bước 1: lập bảng giá trị x, y tương ứng (ít nhất 5 giá trị)
- Bước 2: Vẽ đồ thị hàm số: Nối các điểm trên hệ trục tọa độ, ta được đồ thị hàm số \(y=a{x^2}\)
+) Đồ thị hàm số \(y=a{x^2}\) với \(a \ne 0\) là một đường cong đi qua gốc tọa độ và nhận trục Oy làm trục đối xứng. Đường cong đó được gọi là 1 parabol đỉnh O.
a) Giải phương trình hoành độ giao điểm \(\dfrac {1}{4}x^2=4\) để tìm hoành độ của M và M'
b) Điểm \(N(x_N;y_N)\) thuộc đồ thị hàm số \(y=f(x)\) thì \(y_N=f(x_N)\)
Hướng dẫn giải
Vẽ đồ thị hàm số:
* Hàm số \(\displaystyle y = {1 \over 4}{x^2}\) và \(\displaystyle y = - {1 \over 4}{x^2}\)
- Tập xác định \(D = R\)
- Bảng giá trị
- Đồ thị hàm số \(\displaystyle y = {1 \over 4}{x^2}\) và \(\displaystyle y = - {1 \over 4}{x^2}\) là các Parabol có đỉnh là gốc tọa độ O và nhận Oy làm trục đối xứng. Đồ thị hàm số \(\displaystyle y = {1 \over 4}{x^2}\) nằm trên trục hoành, đồ thị hàm số \(\displaystyle y = - {1 \over 4}{x^2}\) nằm dưới trục hoành.
Câu a: Đường thẳng qua \(B(0; 4)\) song song với \(Ox\) có dạng: y = 4.
Phương trình hoành độ giao điểm của đường thẳng y = 4 và đồ thị hàm số \(\displaystyle y = {1 \over 4}{x^2}\) là:
\(\dfrac{1}{4}{x^2} = 4 \Leftrightarrow {x^2} = 16 \Leftrightarrow x = \pm 4\)
Từ đó ta có hoành độ của \(M\) là \(x = 4\), của \(M'\) là \(x = - 4\).
Câu b: Trên đồ thị hàm số \(\displaystyle y = - {1 \over 4}{x^2}\) ta xác định được điểm \(N\) và \(N’\) có cùng hoành độ với \(M, M’\). Ta được đường thẳng \(NN'//Ox\)
Tìm tung độ của \(N, N’\)
- Ước lượng trên hình vẽ được tung độ của \(N\) là \(y = - 4\); của \(N’\) là \(y = -4\)
- Tính toán theo công thức:
Điểm \(N(4;y)\). Thay \(x = 4\) vào \(\displaystyle y = - {1 \over 4}{x^2}\) nên \(\displaystyle y = - {1 \over 4}{.4^2} = - 4\)
Điểm \(N’(-4;y)\). Thay \(x = - 4\) vào \(\displaystyle y = - {1 \over 4}{x^2}\) nên \(\displaystyle y = - {1 \over 4}.{( - 4)^2} = - 4\)
Vậy tung độ của \(N, N’\) cùng bằng \(-4\).
2.2. Giải câu 55 trang 63 SGK Toán 9 tập 2
Cho phương trình \({{x}^{2}}-x-2=0 \)
a) Giải phương trình
b) Vẽ hai đồ thị \(y=x^2\) và \(y=x+2\) trên cùng một hệ trục tọa độ
c) Chứng tỏ rằng hai nghiệm tìm được trong câu a) là hoành độ giao điểm hai đồ thị
Phương pháp giải
Giải phương trình bằng cách sử dụng công thức nghiệm hoặc
+) Xét phương trình bậc hai: \(a{x^2} + bx + c = 0\,(a \ne 0).\)
Nếu phương trình có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1,\) nghiệm kia là \({x_2} = - \dfrac{c}{a}.\)
Hướng dẫn giải
Câu a:
Giải phương trình: \(x^2 – x – 2 = 0\)
\(\Delta = (-1)^2– 4.1.(-2) = 1 + 8 > 0\)
\(\sqrt\Delta= \sqrt9 = 3\)
\(\Rightarrow {x_1} = -1; {x_2}= 2\)
Câu b:
Vẽ đồ thị hàm số
- Hàm số \(y = x^2\)
+ Bảng giá trị:
- Hàm số \(y = x + 2\)
+ Cho \(x = 0 ⇒ y = 2\) được điểm \(A(0;2)\)
+ Cho \(x = -2 ⇒ y = 0\) được điểm \(B(-2;0)\)
Đồ thị hàm số:
Câu c:
Ta có phương trình hoành độ giao điểm của hai đồ thị là:
\({x^2} = x + 2 \Leftrightarrow {x^2} - x - 2 = 0\) có \(a - b + c = 1 - \left( { - 1} \right) + \left( { - 2} \right) = 0\) nên có hai nghiệm \({x_1} = - 1;{x_2} = 2.\)
Điều này chứng tỏ rằng đường thẳng cắt đồ thị parapol tại hai điểm có hoành độ lần lượt là \(x = -1; x= 2\). Hai giá trị này cũng chính là nghiệm của phương trình \(x^2 - x - 2 = 0\) ở câu a).
2.3. Giải câu 56 trang 63 SGK Toán 9 tập 2
Giải các phương trình
a) \(3{{x}^{4}}-12{{x}^{2}}+9=0 \)
b) \(2{{x}^{4}}+3{{x}^{2}}-2=0 \)
c) \(x^4+5x^2+1=0\)
Phương pháp giải
Phương pháp giải phương trình trùng phương: Đặt \({x^2} = t\left( {t \ge 0} \right)\). Sau đó giải phương trình ẩn t theo công thức nghiệm của phương trình bậc 2. Tìm t đối chiếu điều kiện, từ đó thay vào cách đặt để tìm ra x.
Hướng dẫn giải
Câu a
\(3{{\rm{x}}^4} - 12{{\rm{x}}^2} + 9 = 0\)
Đặt \(t = {x^2}\left( {t \ge 0} \right)\)
Ta có phương trình:
\(\eqalign{
& 3{t^2} - 12t + 9 = 0 \cr
& \Leftrightarrow {t^2} - 4t + 3 = 0 \cr} \)
Phương trình có \(a + b + c = 0\) nên có hai nghiệm \({t_1} = 1; {t_2} = 3\) (đều thỏa mãn)
Với \({t_1} = 1 \Rightarrow {x^2} = 1 \Leftrightarrow x = \pm 1\)
Với \({t_2} = 3 \Rightarrow {x^2} = 3 \Leftrightarrow x = \pm \sqrt 3\)
Vậy phương trình đã cho có 4 nghiệm phân biêt.
Câu b
\(2{{\rm{x}}^4} + 3{{\rm{x}}^2} - 2 = 0\)
Đặt \(t = {x^2}\left( {t \ge 0} \right)\)
Ta có phương trình :
\(\eqalign{
& 2{t^2} + 3t - 2 = 0 \cr
& \Delta = 9 + 16 = 25 \Rightarrow \sqrt \Delta = 5 \cr
& \Rightarrow {t_1} = {{ - 3 + 5} \over 4} = {1 \over 2}(TM);{t_2} = - 2(loại) \cr}\)
Với \(\displaystyle t = {1 \over 2} \Rightarrow {x^2} = {1 \over 2} \\\displaystyle \Leftrightarrow x = \pm \sqrt {{1 \over 2}} = \pm {{\sqrt 2 } \over 2}\)
Vậy phương trình đã cho có 2 nghiệm phân biệt.
Câu c
\({x^4} + 5{{\rm{x}}^2} + 1 = 0\)
Đặt \(t = {x^2}\left( {t \ge 0} \right)\)
Ta có phương trình :
\(t^2 + 5t + 1 = 0\)
\(\Delta = 25 – 4 = 21\)
\(\eqalign{
& \Rightarrow {t_1} = {{ - 5 + \sqrt {21} } \over 2} < 0(loại) \cr
& {t_2} = {{ - 5 - \sqrt {21} } \over 2} < 0(loại) \cr} \)
Vậy phương trình vô nghiệm.
2.4. Giải câu 57 trang 63 SGK Toán 9 tập 2
Giải các phương trình sau
a) \(5{{x}^{2}}-3x+1=2x+11\)
b) \(\dfrac{{{x}^{2}}}{5}-\dfrac{2x}{3}=\dfrac{x+5}{6}\)
c) \(\dfrac{x}{x-2}=\dfrac{10-2x}{{{x}^{2}}-2x}\)
d) \(\dfrac{x+0,5}{3x+1}=\dfrac{7x+2}{9{{x}^{2}}-1} \)
e) \(2\sqrt{3}{{x}^{2}}+x+1=\sqrt{3}\left( x+1 \right)\)
f) \({{x}^{2}}+2\sqrt{2}x+4=3\left( x+\sqrt{2} \right)\)
Phương pháp giải
Đưa phương trình đã cho về dạng: \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Sau đó sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để tìm nghiệm.
Hướng dẫn giải
Câu a
\(\eqalign{
& 5{{\rm{x}}^2} - 3{\rm{x}} + 1 = 2{\rm{x}} + 11 \cr
& \Leftrightarrow 5{{\rm{x}}^2} - 5{\rm{x}} - 10 = 0 \cr
& \Leftrightarrow {x^2} - x - 2 = 0 \cr}\)
Phương trình có \(a – b + c = 1 + 1 – 2 = 0\) nên có 2 nghiệm \({x_1}= -1; {x_2}= 2\)
Câu b
\(\eqalign{
& {{{x^2}} \over 5} - {{2{\rm{x}}} \over 3} = {{x + 5} \over 6} \cr
& \Leftrightarrow 6{{\rm{x}}^2} - 20{\rm{x}} = 5{\rm{x}} + 25 \cr
& \Leftrightarrow 6{{\rm{x}}^2} - 25{\rm{x}} - 25 = 0 \cr
& \Delta = {25^2} + 4.6.25 = 1225 \cr
& \sqrt \Delta = 35 \Rightarrow {x_1} = 5;{x_2} = - {5 \over 6} \cr} \)
Vậy phương trình có 2 nghiệm phân biệt \({x_1} = 5;{x_2} = - {5 \over 6}\)
Câu c
Điều kiện: \(x \ne \left\{ {0;2} \right\}\)
Ta có \(\dfrac{x}{{x - 2}} = \dfrac{{10 - 2x}}{{{x^2} - 2x}}\)
\( \Leftrightarrow \dfrac{x}{{x - 2}} = \dfrac{{10 - 2x}}{{x\left( {x - 2} \right)}}\)
\(\begin{array}{l} \Leftrightarrow \dfrac{{{x^2}}}{{x\left( {x - 2} \right)}} = \dfrac{{10 - 2x}}{{x\left( {x - 2} \right)}}\\ \Rightarrow {x^2} = 10 - 2x\\ \Leftrightarrow {x^2} + 2x - 10 = 0\end{array}\)
Phương trình trên có \(\Delta ' = {1^2} - 1.\left( { - 10} \right) = 11 > 0\) nên có hai nghiệm \(\left[ \begin{array}{l}x = - 1 + \sqrt {11} \\x = - 1 - \sqrt {11} \end{array} \right.\) (thỏa mãn)
Vậy phương trình đã cho có hai nghiệm \(x = - 1 + \sqrt {11} ;x = - 1 - \sqrt {11} \) .
Câu d
\(\displaystyle {{x + 0,5} \over {3{\rm{x}} + 1}} = {{7{\rm{x}} + 2} \over {9{{\rm{x}}^2} - 1}}\) ĐKXĐ: \(x \ne \pm {1 \over 3}\)
\(\eqalign{
& \Rightarrow {{2{\rm{x}} + 1} \over {3{\rm{x}} + 1}} = {{14{\rm{x}} + 4} \over {9{{\rm{x}}^2} - 1}} \cr
& \Leftrightarrow \left( {2{\rm{x}} + 1} \right)\left( {3{\rm{x}} - 1} \right) = 14{\rm{x}} + 4 \cr
& \Leftrightarrow 6{{\rm{x}}^2} + x - 1 = 14{\rm{x}} + 4 \cr
& \Leftrightarrow 6{{\rm{x}}^2} - 13{\rm{x}} - 5 = 0 \cr
& \Delta = {( - 13)^2} - 4.6.( - 5) = 289 \cr
& \sqrt \Delta = \sqrt {289} = 17 \cr
& \Rightarrow {x_1} = {5 \over 2}(TM) \cr
& {x_2} = - {1 \over 3}(loại) \cr} \)
Vậy phương trình đã cho có 1 nghiệm duy nhất: \(\displaystyle {x} = {5 \over 2}\)
Câu e
\(\begin{array}{l}
2\sqrt 3 {x^2} + x + 1 = \sqrt 3 \left( {x + 1} \right)\\
\Leftrightarrow 2\sqrt 3 {x^2} - \left( {\sqrt 3 - 1} \right)x + 1 - \sqrt 3
\end{array}\)
\(\begin{array}{l}
\Delta = {\left( {\sqrt 3 - 1} \right)^2} - 8\sqrt 3 \left( {1 - \sqrt 3 } \right)\\
\Delta = 3 - 2\sqrt 3 + 1 - 8\sqrt 3 + 24\\
= 28 - 10\sqrt 3 \\
= {5^2} - 2.5.\sqrt 3 + {\left( {\sqrt 3 } \right)^2}\\
= {\left( {5 - \sqrt 3 } \right)^2}
\end{array}\)
\(\begin{array}{l}
{x_1} = \dfrac{{\sqrt 3 - 1 - 5 + \sqrt 3 }}{{4\sqrt 3 }} = \dfrac{{1 - \sqrt 3 }}{2}\\
{x_2} = \dfrac{{\sqrt 3 - 1 + 5 - \sqrt 3 }}{{4\sqrt 3 }} = \dfrac{{\sqrt 3 }}{3}
\end{array}\)
Vậy phương trình đã cho có 2 nghiệm phân biệt.
Câu f
\(\eqalign{
& {x^2} + 2\sqrt 2 x + 4 = 3\left( {x + \sqrt 2 } \right) \cr
& \Leftrightarrow {x^2} + \left( {2\sqrt 2 - 3} \right)x + 4 - 3\sqrt 2 = 0 \cr
& \Delta = 8 - 12\sqrt 2 + 9 - 16 + 12\sqrt 2 = 1 \cr
& \sqrt \Delta = 1 \cr
& \Rightarrow {x_1} = {{3 - 2\sqrt 2 + 1} \over 2} = 2 - \sqrt 2 \cr
& {x_2} = {{3 - 2\sqrt 2 - 1} \over 2} = 1 - \sqrt 2 \cr} \)
Vậy phương trình đã cho có 2 nghiệm phân biệt.
2.5. Giải câu 58 trang 63 SGK Toán 9 tập 2
Giải các phương trình
a) \(1,2{{x}^{3}}-{{x}^{2}}-0,2x=0\)
b) \(5{{x}^{3}}-{{x}^{2}}-5x+1=0\)
Phương pháp giải
Phân tích vế trái của phương trình thành nhân tử sau đó đưa phương trình về dạng phương trình tích để giải: \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}
A = 0\\
B = 0
\end{array} \right.\)
Hướng dẫn giải
Câu a
\(1,2{{\rm{x}}^3} - {x^2} - 0,2{\rm{x}} = 0\)
\( \Leftrightarrow x\left( {1,2{{\rm{x}}^2} - x - 0,2} \right) = 0\)
\(\Leftrightarrow \left[ \matrix{x = 0 \hfill \cr1,2{{\rm{x}}^2} - x - 0,2 = 0(*) \hfill \cr} \right.\)
Giải (*): \(1,2x^2 – x – 0,2 = 0\)
Ta có: \(a + b + c = 1,2 + (-1) + (-0,2) = 0\)
Vậy (*) có 2 nghiệm: \(\displaystyle {x_1}= 1\); \(\displaystyle {x_2} = {{ - 0,2} \over {1,2}} = - {1 \over 6}\)
Vậy phương trình đã cho có 3 nghiệm: \(\displaystyle {x_1} = 0;{x_2} = 1;{x_3} = - {1 \over 6}\)
Câu b
\(5{{\rm{x}}^3} - {x^2} - 5{\rm{x}} + 1 = 0\)
\(⇔ x^2(5x – 1) – (5x – 1) = 0\)
\(⇔ (5x – 1)(x^2– 1) = 0\)
\( \displaystyle \Leftrightarrow \left[ \matrix{5{\rm{x}} - 1 = 0 \hfill \cr {x^2} - 1 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{x = \dfrac{1}{5} \hfill \cr x = \pm 1 \hfill \cr} \right.\)
Vậy phương trình đã cho có 3 nghiệm: \(\displaystyle {x_1} = {1 \over 5};{x_2} = - 1;{x_3} = 1\)
2.6. Giải câu 59 trang 63 SGK Toán 9 tập 2
Giải phương trình bằng cách đặt ẩn phụ:
a) \(2{{\left( {{x}^{2}}-2x \right)}^{2}}+3\left( {{x}^{2}}-3x \right)+1=0 \)
b) \({{\left( x+\dfrac{1}{x} \right)}^{2}}-4\left( x+\dfrac{1}{x} \right)+3=0 \)
Phương pháp giải
a) Đặt \({x^2} - 2x = t\) để đưa phương trình đã cho về phương trình bậc hai ẩn \(t.\)
b) Đặt \(x + \dfrac{1}{x} = t\) để đưa phương trình đã cho về phương trình bậc hai ẩn \(t.\)
Hướng dẫn giải
Câu a
Đặt \({x^2} - 2x = t\), ta thu được phương trình \(2{t^2} + 3t + 1 = 0\)
Phương trình trên có \(a - b + c = 2 - 3 + 1 = 0\) nên có hai nghiệm \(t = - 1;t = - \dfrac{1}{2}.\)
+ Với \(t = - 1 \Rightarrow {x^2} - 2x = - 1\\ \Leftrightarrow {x^2} - 2x + 1 = 0\\ \Leftrightarrow {\left( {x - 1} \right)^2} = 0 \Leftrightarrow x = 1\)
+ Với \(t = - \dfrac{1}{2} \Rightarrow {x^2} - 2x = - \dfrac{1}{2}\\ \Leftrightarrow {x^2} - 2x + 1 = \dfrac{1}{2} \Leftrightarrow {\left( {x - 1} \right)^2} = \dfrac{1}{2}\)
\( \Leftrightarrow \left[ \begin{array}{l}x - 1 = \dfrac{{\sqrt 2 }}{2}\\x - 1 = - \dfrac{{\sqrt 2 }}{2}\end{array} \right. \\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{2 + \sqrt 2 }}{2}\\x = \dfrac{{2 - \sqrt 2 }}{2}\end{array} \right.\)
Vậy phương trình đã cho có ba nghiệm \(x = 1;x = \dfrac{{2 + \sqrt 2 }}{2};x = \dfrac{{2 - \sqrt 2 }}{2}\)
Câu b
ĐK: \(x \ne 0.\)
Đặt \(x + \dfrac{1}{x} = t\), ta thu được phương trình \({t^2} - 4t + 3 = 0\)
Phương trình trên có \(a + b + c = 1 + \left( { - 4} \right) + 3 = 0\) nên có hai nghiệm \(t = 1;t = 3.\)
+ Với \(t = 1 \Rightarrow x + \dfrac{1}{x} = 1 \Rightarrow {x^2} - x + 1 = 0\) .
Xét \(\Delta = {\left( { - 1} \right)^2} - 4.1.1 = - 3 < 0\) nên phương trình vô nghiệm.
+ Với \(t = 3 \Rightarrow x + \dfrac{1}{x} = 3\\ \Rightarrow {x^2} - 3x + 1 = 0\, (*)\)
Phương trình (*) có \(\Delta = {\left( { - 3} \right)^2} - 4.1.1 = 5 > 0\) nên có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{3 + \sqrt 5 }}{2}\\x = \dfrac{{3 - \sqrt 5 }}{2}\end{array} \right.\) (thỏa mãn)
Vậy phương trình đã cho có hai nghiệm \(x = \dfrac{{3 + \sqrt 5 }}{2};x = \dfrac{{3 - \sqrt 5 }}{2}\) .
2.7. Giải câu 60 trang 64 SGK Toán 9 tập 2
Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:
a) \(12{{x}^{2}}-8x+1=0,\,x_1=\dfrac 1 2\)
b) \(2{{x}^{2}}-7x-39=0 ,\,x_1=-3\)
c) \({{x}^{2}}+x-2+\sqrt{2}=0,\,x_1=-\sqrt2\)
d) \({{x}^{2}}-2mx+m-1=0,\,x_1=2\)
Phương pháp giải
Phương pháp: Sử dụng hệ thức Viet để tìm nghiệm còn lại của phương trình:
\(\left\{ \begin{array}{l}
{x_1} + {x_2} = - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)
Hướng dẫn giải
Câu a
\(\displaystyle 12{{\rm{x}}^2} - 8{\rm{x}} + 1 = 0;{x_1} = {1 \over 2}\)
Ta có: \(\displaystyle {x_1}{x_2} = {1 \over {12}} \Leftrightarrow {1 \over 2}{x_2} = {1 \over {12}} \Leftrightarrow {x_2} = {1 \over 6}\)
Câu b
\(2{{\rm{x}}^2} - 7{\rm{x}} - 39 = 0;{x_1} = - 3\)
Ta có: \(\displaystyle {x_1}.{x_2} = {{ - 39} \over 2} \Leftrightarrow - 3{{\rm{x}}_2} = {{ - 39} \over 2}\\ \Leftrightarrow \displaystyle {x_2} = {{13} \over 2}\)
Câu c
\({x^2} + x - 2 + \sqrt 2 = 0;{x_1} = - \sqrt 2 \)
Ta có:
\(\eqalign{
& {x_1}.{x_2} = \sqrt 2 - 2 \cr
& \Leftrightarrow - \sqrt 2 .{x_2} = \sqrt 2 - 2 \cr
& \Leftrightarrow {x_2} = {{\sqrt 2 - 2} \over { - \sqrt 2 }} = {{\sqrt 2 \left( {1 - \sqrt 2 } \right)} \over { - \sqrt 2 }} = \sqrt 2 - 1 \cr} \)
Câu d
\({x^2} - 2m{\rm{x}} + m - 1 = 0\, \, (1);{x_1} = 2\)
Vì \({x_1} = 2\) là một nghiệm của pt (1) nên
\(2^2- 2m.2 + m - 1 = 0\)
\(⇔ m = 1\)
Khi \(m = 1\) ta có: \({x_1}{x_2} = m - 1\) (hệ thức Vi-ét)
\(⇔ 2.{x_2}= 0\) (vì \({x_1} = 2\) và \(m = 1\))
\(⇔ {x_2}= 0\)
2.8. Giải câu 61 trang 64 SGK Toán 9 tập 2
Tìm hai số u và v trong mỗi trường hợp sau:
a) \(u+v=12,uv=28\) và \(u>v\)
b) \(u+v=3,uv=6\)
Phương pháp giải
Nếu S là tổng 2 số u, v; P là tích 2 số u, v thỏa mãn điều kiện \({S^2} - 4P \ge 0\) thi u, v sẽ là nghiệm của phương trình sau: \({x^2} - Sx + P = 0\)
Hướng dẫn giải
Câu a
\(u + v = 12; uv = 28\) và \(u > v\)
Ta có: \({12^2} - 4.28 = 32 > 0\)
Nên \(u\) và \(v\) là hai nghiệm của phương trình:
\(x^2 – 12x + 28 = 0\)
\(\Delta'= 36 – 28 = 8\)
\( \Rightarrow {x_1} = 6 + 2\sqrt 2 ;{x_2} = 6 - 2\sqrt 2 \)
Vì \(6 + 2\sqrt 2 > 6 - 2\sqrt 2\) nên suy ra \(u = 6 + 2\sqrt 2 ;v = 6 - 2\sqrt 2\)
Câu b
\(u + v = 3; uv = 6\)
Ta có: \({3^2} - 4.6 = - 15 < 0\)
Nên \(u\) và \(v\) không có giá trị nào thỏa mãn đầu bài.
2.9. Giải câu 62 trang 64 SGK Toán 9 tập 2
Cho phương trình \(7{{x}^{2}}+2\left( m-1 \right)x-{{m}^{2}}=0 \)
a) Với giá trị nào của m thì phương trình có nghiệm?
b) Trong trường hợp phương trình có nghiệm, dùng hệ thức Vi - ét, tính tổng các bình phương hai nghiệm của phương trình theo m.
Phương pháp giải
Phương trình \(a{x^2} + bx + c = 0\,\left( {a \ne 0} \right)\) có nghiệm khi và chỉ khi \(\Delta \ge 0\) (hoặc \(\Delta ' \ge 0)\)
Hướng dẫn giải
Câu a
Xét phương trình \(7x^2 + 2(m – 1)x – m^2 = 0\) (1) có \(a=7\ne 0\)
Phương trình (1) có nghiệm khi \(\Delta’ ≥ 0\)
Ta có: \(\Delta’ = (m – 1)^2 – 7(-m^2) = (m – 1)^2 + 7m^2 ≥ 0\) với mọi \(m\)
Vậy phương trình (1) luôn luôn có nghiệm với mọi giá trị của \(m\)
Câu b
Xét phương trình \(7x^2 + 2(m – 1)x – m^2 = 0\) (1) có \(a=7\ne 0\)
Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình (1)
Theo hệ thức Viet ta có:
\(\left\{ \begin{array}{l}
{x_1} + {x_2} = - \dfrac{2(m-1)}{7}\\
{x_1}.{x_2} = \dfrac{- m^2}{7}
\end{array} \right.\)
Ta có:
\(\begin{array}{l}
x_1^2 + x_2^2=x_1^2 + x_2^2+2x_1x_2-2x_1x_2 \\= {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\\
= {\left[ {\dfrac{{ - 2\left( {m - 1} \right)}}{7}} \right]^2} - 2.\dfrac{{ - {m^2}}}{7}\\
= \dfrac{{4\left( {{m^2} - 2m + 1} \right)}}{{49}} + \dfrac{{2{m^2}}}{7}\\
= \dfrac{{4{m^2} - 8m + 4 + 14{m^2}}}{{49}}\\
= \dfrac{{18{m^2} - 8m + 4}}{{49}}
\end{array}\)
Vậy \(\displaystyle x_1^2 + x_2^2 = {{18{m^2} - 8m + 4} \over {49}}\) .
2.10. Giải câu 63 trang 64 SGK Toán 9 tập 2
Sau hai năm, số dân của một thành phố tăng từ \(2 000 000\) người lên \(2 020 050\) người. Hỏi trung bình mỗi năm dân số của thành phố đó tăng bao nhiêu phần trăm?
Phương pháp giải
Bước 1: Lập phương trình
- Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm)
- Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết
- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình, đối chiếu với điều kiện ban đầu và kết luận.
Hướng dẫn giải
Gọi tỉ lệ tăng dân số trung bình mỗi năm là \(x\) % \((x > 0)\).
Sau một năm dân số của thành phố là:
\(\displaystyle 2 000 000 + 2 000 000 . {x \over {100}}= 2 000 000 + 20 000x\) (người)
Sau hai năm, dân số của thành phố là:
\(\displaystyle 2000000 +20 000x + (2000 000 + 20 000x). {x \over {100}}\)
\(= 2000 000 + 40 000x + 200x^2\) (người)
Ta có phương trình:
\(2 000 000 + 40 000x + 200x^2= 2 020 050\)
\(⇔ 4x^2 + 800x – 401 = 0\)
\(\Delta' = 400^2 – 4(-401) = 160 000 + 1 604\)
\(= 161 604 > 0\)
\(\sqrt\Delta'= \sqrt{161 604} = 402\)
Vậy phương trình có 2 nghiệm:
\(\displaystyle {x_1} = {{ - 400 + 402} \over 4} = 0,5(TM)\)
\(\displaystyle {x_2} = {{ - 400 - 402} \over 4} = - 200,5 < 0\) (loại)
Tỉ lệ tăng dẫn số trung bình hàng năm của thành phố là \(0,5\) %
2.11. Giải câu 64 trang 64 SGK Toán 9 tập 2
Bài toán yêu cầu tìm tích của một số dương với một số lớn hơn nó 2 đơn vị, nhưng bạn Quân nhầm đầu bài lại tính tích của một số dương với một số bé hơn nó 2 đơn vị. Kết quả của bạn Quân là 120. Hỏi nếu làm đúng đầu bài đã cho thì kết quả phải là bao nhiêu?
Phương pháp giải
Bước 1: Lập phương trình
- Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm)
- Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết
- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình, đối chiếu với điều kiện ban đầu và kết luận.
Hướng dẫn giải
Gọi \(x\) là số dương mà đầu bài cho, \(x >0\)
Bạn Quân đã chọn số \((x – 2)\) để nhân với \(x\).
Theo đề bài, ta có: \(x(x – 2) = 120\) hay \(x^2 – 2x – 120 = 0\)
Phương trình trên có \(\Delta'=(-1)^2-1.(-120)=121>0\)
Suy ra \(x = 1+\sqrt {121}=12\) (thỏa mãn) hoặc \(x=1-\sqrt {121}=-10\) (loại)
Nên số đầu bài cho là \(12\)
Theo đầu bài yêu cầu tìm tích của \(x\) với \(x +2\)
Vậy kết quả đúng phải là: \(12.14 = 168\)
2.12. Giải câu 65 trang 64 SGK Toán 9 tập 2
Một xe lửa đi từ Hà Nội vào Bình Sơn (Quảng Ngãi). Sau đó 1 giờ, một xe lửa khác đi từ Bình Sơn ra Hà Nội với vận tốc lớn hơn vận tốc của xe lửa thứ nhất là 5km/h. Hai xe gặp nhau tại một ga ở chính giữa quãng đường. Tìm vận tốc của mỗi xe, giả thiết rằng quãng đường Hà Nội – Bình Sơn dài 900km
Phương pháp giải
Bước 1: Lập phương trình
- Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm)
- Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết
- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình, đối chiếu với điều kiện ban đầu và kết luận.
Hướng dẫn giải
Gọi \(x\) (km/h) là vận tốc của xe lửa thứ nhất. Điều kiện \(x > 0\).
Khi đó vận tốc của xe lửa thứ hai là \(x + 5\) (km/h).
Đến khi gặp nhau tại chính giữa quang đường thì mỗi xe đều đi được \(900:2=450\) km.
Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: \(\displaystyle {{450} \over x}\) (giờ)
Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: \(\displaystyle {{450} \over {x + 5}}\) (giờ)
Vì xe lửa thứ hai đi sau \(1\) giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất \(1\) giờ. Ta có phương trình:
\(\dfrac{{450}}{x} - \dfrac{{450}}{{x + 5}} = 1\)
\(\begin{array}{l}
\Leftrightarrow 450\left( {x + 5} \right) - 450x = x\left( {x + 5} \right)\\
\Leftrightarrow 450x + 2250 - 450x = {x^2} + 5x\\
\Leftrightarrow {x^2} + 5x - 2250 = 0\\
\Delta = {5^2} - 4.\left( { - 2250} \right) = 9025 > 0,\sqrt \Delta = 95
\end{array}\)
Từ đó ta có: \({x_1} = 45\) (nhận); \({x_2} = -50\) (loại)
Vậy: Vận tốc của xe lửa thứ nhất là \(45\) km/h
Vận tốc của xe lửa thứ hai là \(50\) km/h.
2.13. Giải câu 66 trang 64 SGK Toán 9 tập 2
Cho tam giác ABC có \(BC = 16 cm\) , đường cao \(AH = 12 cm\). Một hình chữ nhật MNPQ có đỉnh M thuộc cạnh AB, đỉnh N thuộc cạnh AC còn hai đỉnh P và Q thuộc cạnh BC (hình 17). Xác định vị trí của điểm M trên cạnh AB sao cho diện tích của hình chữ nhật đó bằng 36 \(cm^2.\)
Phương pháp giải
Giải bài toán bằng cách lập phương trình
Bước 1: Lập phương trình
- Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm)
- Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết
- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình, đối chiếu với điều kiện ban đầu và kết luận.
Chú ý: Dựa vào tỉ lệ cạnh của tam giác đồng dạng để tính các cạnh cần thiết.
Sử dụng công thức tính diện tích hình chữ nhật bằng tích của chiều dài với chiều rộng.
Hướng dẫn giải
Gọi \(x\) (cm) là độ dài của đoạn \(AK\). Điều kiện \(0 < x < 12\)
Vì \(∆ABC\) đồng dạng \(∆AMN\) nên
\(\eqalign{
& {{MN} \over {BC}} = {{AM} \over {AB}} = {{AK} \over {AH}} = {x \over {12}} \cr
& \Rightarrow MN = {{16x} \over {12}} = {{4{\rm{x}}} \over 3} \cr} \)
Ta có: \(MQ = KH = 12 – x\)
Do đó diện tich hình chữ nhật \(MNPQ\) là: \(\displaystyle \left( {12 - x} \right){{4{\rm{x}}} \over 3}\)
Ta có phương trình:
\(\displaystyle \left( {12 - x} \right){{4{\rm{x}}} \over 3} = 36 \Leftrightarrow {x^2} - 12{\rm{x}} + 27 = 0\)
Phương tình trên có \( \Delta'=(-6)^2-1.27=9>0\)
Suy ra \({x} = 9\) (nhận) hoặc \({x} = 3\) (nhận)
Vậy độ dài của đoạn \(AK = 3cm\) hoặc \(AK=9cm\). Suy ra \( \dfrac {AM}{AB}=\dfrac {1}{4}\) hoặc \( \dfrac {AM}{AB}=\dfrac {3}{4}\)
Khi đó \(M\) sẽ có hai vị trí trên \(AB\) nhưng diện tích hình chữ nhật \(MNPQ\) luôn bằng \(36\) cm2
Tham khảo thêm
- doc Giải bài tập SGK Toán 9 Bài 1: Hàm số y = ax^2 (a ≠ 0)
- doc Giải bài tập SGK Toán 9 Bài 2: Đồ thị của hàm số y = ax^2 (a ≠ 0)
- doc Giải bài tập SGK Toán 9 Bài 3: Phương trình bậc hai một ẩn
- doc Giải bài tập SGK Toán 9 Bài 4: Công thức nghiệm của phương trình bậc hai
- doc Giải bài tập SGK Toán 9 Bài 5: Công thức nghiệm thu gọn
- doc Giải bài tập SGK Toán 9 Bài 6: Hệ thức Vi-ét và ứng dụng
- doc Giải bài tập SGK Toán 9 Bài 7: Phương trình quy về phương trình bậc hai
- doc Giải bài tập SGK Toán 9 Bài 8: Giải bài toán bằng cách lập phương trình