Toán 10 Ôn tập chương 2: Tích vô hướng của hai vectơ và ứng dụng

Elib đã biên soạn và tổng hợp để giới thiệu đến các em nội dung bài giảng Ôn tập chương 2: Tích vô hướng của hai vectơ và ứng dụng. Bài giảng giúp các em nắm vững lý thuyết bài học, kèm theo đó là những bài tập minh họa có hướng dẫn giải chi tiết sẽ giúp các em hiểu bài hơn. Mời các em cùng theo dõi.

Toán 10 Ôn tập chương 2: Tích vô hướng của hai vectơ và ứng dụng

Toán 10 Ôn tập chương 2: Tích vô hướng của hai vectơ và ứng dụng

1. Tóm tắt lý thuyết

1.1. Giá trị lượng giác của một góc

Với mỗi góc α(0oα180o)α(0oα180o), ta xác định điểm M trên nửa đường tròn sao cho ^MOx=αˆMOx=α. Giả sử điểm M(x;y). Khi đó:

  • Tung độ y của điểm M được gọi là sin của góc αα, ta kí hiệu là sinαsinα
  • Hoành độ x của điểm M được gọi là cosin của góc αα, ta kí hiệu là cosαcosα.
  • Tỉ số  yxyx (x0)(x0) được gọi là tan của góc αα, ta kí hiệu là tanαtanα
  • Tỉ số  xyxy (y0)(y0) được gọi là côtan của góc αα, ta kí hiệu là cotαcotα

1.2. Định nghĩa tích vô hướng của hai vectơ

- Tích vô hướng của hai vectơ aa và bb là một số (đại lượng đại số), được kí hiệu là a.ba.b và được xác định bởi công thức

a.b=|a|.|b|.cos(a,b)a.b=|a|.|b|.cos(a,b)

- Biểu thức tọa độ của tích vô hướng: Cho hai vectơ a(x;y);b(x;y). Khi đó:

  • a.b=xx+yy
  • |a|=x2+y2
  • cos(a;b)=xx+yyx2+y2.x2+y2,a0;b0
  • abxx+yy=0

1.3. Định lí cosin trong tam giác

- Trong tam giác ABC, gọi Ab=c;AC=b;BC=a, ta có:

  • a2=b2+c22bc.cosA
  • b2=a2+c22ac.cosB
  • c2=a2+b22ab.cosC

- Từ đó, ta có hệ quả sau: 

  • cosA=b2+c2a22bc
  • cosB=a2+c2b22ac
  • cosC=a2+b2c22ab

1.4. Định lí sin

  • a=2RsinA,b=2RsinB,c=2RsinC
  • asinA=bsinB=csinC=2R

1.5. Công thức trung tuyến của tam giác

  • m2a=b2+c22a24
  • m2b=a2+c22b24
  • m2c=a2+b22c24

1.6. Công thức tính diện tích tam giác mở rộng

  • S=12a.ha=12b.hb=12c.hc
  • S=12ab.sinC=12ac.sinB=12bc.sinA
  • S=abc4R
  • S=pr
  • S=p(pa)(pb)(pc)

2. Bài tập minh họa

Câu 1: Cho tam giác ABCAB=4, AC=6, ˆA=600. Tính độ dài cạnh BC và bán kính đường tròn ngoại tiếp tam giác ABC.  

Hướng dẫn giải

Áp dụng bất đẳng thức Côsi ta có

BC2=AB2+AC22AB.AC.cosA 

=42+622.4.6.cos600=28

BC=28=27

 Ta có

S=12AB.AC.sinA =12.4.6.sin600=63S=abc4R

R=abc4S=4.6.274.63=2213

Câu 2: Trong mặt phẳng Oxy cho điểm A(1;2), B(3;4). Gọi M là trung điểm của AB.

Viết phương trình tổng quát của đường thẳng AB.  Tính khoảng cách từ điểm N(2;1) đến đường thẳng AB.   
Viết phương trình tổng quát của đường thẳng d đi qua M và vuông góc với đường thẳng Δ:3x+y5=0.

Hướng dẫn giải

a) AB=(2;6)

Đường thẳng AB nhận AB=(2;6) làm VTCP  suy ra VTPT của ABn=(6;2)

Đường thẳng AB đi qua A(1;2) và có VTPT là n=(6;2), nên có phương trình tổng quát là 6(x1)+2(y2)=0 

6x+2y10=0

d(N,AB)=|ax0+by0+c|a2+b2

=|6.(2)+2.110|62+22=10

b) M(2;1)

VTPT của đường thẳng ΔnΔ=(3;1)

d vuông góc với Δ nên d nhận VTPT của ΔnΔ=(3;1)  làm VTCP

Suy ra VTPT của dn=(1;3).

d đi qua M(2;1) và có VTPT là n=(1;3) nên có phương trình tổng quát là    1(x2)3(y+1)=0x3y5=0

3. Luyện tập

3.1. Bài tập tự luận

Câu 1: Trong mặt phẳng Oxy cho vecto a=(5;2) và vecto b=(3;2) . Hãy tính tích vô hướng a.b.

Câu 2: Từ hệ thức a2=b2+c22bc.cosA trong tam giác, hãy suy ra định lí Py-ta-go.

Câu 3: Chứng minh rằng với mọi tam giác ABC, ta có  a=2RsinA;b=2RsinB;c=2RsinC, trong đó R là bán kính đường tròn ngoại tiếp tam giác ABC.

3.2. Bài tập trắc nghiệm

Câu 1: Tam giác ABC có b=7, c=5 và cosA=35. Diện tích tam giác ABC là:

A. 14

B. 15

C. 16

D. 17

Câu 2: Bán kính đường tròn nội tiếp tam giác đều cạnh a là:

A. a34

B. a35

C. a36

D. a37

Câu 3: Cho tam giác ABC có diện tích S. Nếu tăng độ dài cạnh a lên 3 lần, tăng độ dài cạnh b lên 2 lần và giữ nguyên độ lớn của góc C thì diện tích tam giác mới đc tạo nên là:

A. 3S

B. 4S

C. 5S

D. 6S

Câu 4: Cho tam giác ABC có BC=a, AC=b. Tam giác ABC có diện tích lớn nhất khi góc C bằng?

A. 60

B. 90

C. 150

D. 120

Câu 5: Trong mặt phẳng tọa độ Oxy, cho 3 điểm A(1;1),B(2;4),C(6;0). Tam giác ABC là tam giác gì?

A. Tam giác nhọn

B. Tam giác vuông

C. Tam giác tù

D. Tam giác đều

3.3. Trắc nghiệm Online

Các em hãy luyện tập bài trắc nghiệm Ôn tập chương 2: Tích vô hướng của hai vectơ và ứng dụng Toán 10 sau để nắm rõ thêm kiến thức bài học.

Trắc Nghiệm

4. Kết luận

Qua bài học này, các em cần nắm được những nội dung sau:

  • Hệ thống lại tất cả các kiến thức đã được học ở chương Tích vô hướng của hai vectơ và ứng dụng
  • Làm được các bài tập của chương.
Ngày:04/08/2020 Chia sẻ bởi:

CÓ THỂ BẠN QUAN TÂM